Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Decays of light mesons in the relativistic quark model

https://doi.org/10.29235/1561-2430-2019-55-3-325-337

Abstract

In the framework of the relativistic quark model based on the point form of the Poincaré-invariant quantum mechanics, the parameters were fixed using the integral representations of the lepton decay constants of pseudoscalar and vector mesons containing u-, d- and s-quarks. As a result of numerical calculations using the oscillator wave function, the basic parameters of the model are obtained using the pseudoscalar density constant and current quark masses. The analysis showed that the obtained calculation results in the framework of the model and the experimental data on the lepton decays of hadrons agree well with each other. As a result, the calculation method is generalized to the case of hadronic transitions with γ-quantum emission and a subsequent calculation of the integral representations of radiative decay constants of pseudoscalar and vector mesons. The obtained values of the anomalous magnetic moments are compared with the baryon data. As a test of the model, the authors studied the behavior of the form-factors of radiative decays of vector mesons with a subsequent comparison to the modern experimental data in the q < 0.5 GeV range where the resonance effects are insignificant. As a result, self-consistent descriptions of lepton and radiative transitions were obtained within the framework of the model proposed by the authors.

About the Authors

V. Yu. Haurysh
Sukhoi State Technical University of Gomel
Belarus

Vadzim Y. Haurysh – Postgraduate Student

48, Oktyabrya Ave., 246746, Gomel, Republic of Belarus



V. V. Andreev
Francisk Skorina Gomel State University
Belarus

Viktor V. Andreev – Dr. Sc. (Physics and Mathematics), Professor

98, Sovetskaya Str., 246019, Gomel, Republic of Belarus



References

1. Babusci D., Balwierz-Pytko I., Bencivenni G., Bloise C., Bossi F., Branchini P. [et al.]. Study of the Dalitz decay e e + − ϕ → η with the KLOE detector. Physical Review Letters B, 2015, vol. 742, pp. 1–6. https://doi.org/10.1016/j.physletb.2015.01.011

2. Adlarson P., Afzal F., Aguar-Bartolomé P., Ahmed Z., Annand J. R. M., Arends H. J. [et al.]. Measurement of the 0 e e + − ω → π and e e + − η → Dalitz decays with the A2 setup at MAMI. Physical Review C, 2017, vol. 95, pp. 035208. https://doi.org/10.1103/PhysRevC.95.035208

3. Anastasi A., Babusci D., Bencivenni G., Berlowski M., Bloise C., Bossi F. [et al.]. Measurement of the e e + − ϕ → η transition form factor with the KLOE detector. Physical Review Letter B, 2016, vol. 752, pp. 362–367. https://doi.org/10.1016/j.physletb.2016.04.015

4. Amelino-Camelia G., Archilli F., Babusci D., Badoni D., Bencivenni G., Bernabeu J. [et al.]. Physics with the KLOE-2 experiment at the upgraded DAFNE. European Physics Journal, 2010, vol. 68, pp. 619–681. https://doi.org/10.1140/epjc/s10052-010-1351-1

5. Dirac P. A. M. Forms of Relativistic Dynamics. Review Modern Physics, 1949, vol. 21, pp. 392–399. https://doi.org/10.1103/RevModPhys.21.392

6. Keister B. D., Polyzou W. N. Relativistic Hamiltonian dynamics in nuclear and particle physics. Advanced Nuclear Physics, 1991, vol. 20, pp. 225–479.

7. Jaus W. Relativistic constituent quark model of electroweak properties of light mesons. Physical Review D, 1991, vol. 44, pp. 2851–2859. https://doi.org/10.1103/PhysRevD.44.2851

8. Jaus W. Consistent treatment of spin 1 mesons in the light front quark model. Physical Review D, 2003, vol. 67, pp. 094010. https://doi.org/10.1103/PhysRevD.67.094010

9. Choi Ho-Meoyng. Decay constants and radiative decays of heavy mesons in light-front quark model. Physical Review D, 2007, vol. 75, pp. 094010. https://doi.org/10.1103/PhysRevD.75.073016

10. Zhang W. M. Light front dynamics and light front QCD. Chinese Journal of Physics, 1994, vol. 32. pp. 717–808.

11. Krutov A. F., Troitsky V. E. Relativistic instant form approach to the structure of two-body composite systems. Physical Review C, 2002, vol. 65, pp. 045501. https://doi.org/10.1103/PhysRevC.65.045501

12. Krutov A. F., Polezhaev R. G., Troitsky, V. E. Magnetic moment of the ρ-meson in instant-form relativistic quantum mechanics. Physical Review D, 2018, vol. 97, pp. 033007. https://doi.org/10.1103/PhysRevD.97.033007

13. Krutov A. F., Polezhaev R. G., Troitsky V. E. Electroweak properties of ρ-meson in the instant form of relativistic quantum mechanics. EPJ Web Conference, 2017, vol. 138, pp. 02007. https://doi.org/10.1051/epjconf/201713802007

14. Klink W. H. Point form relativistic quantum mechanics and electromagnetic form factors. Physical Review C, 1998, vol. 58, pp. 3587–3604. https://doi.org/10.1103/PhysRevC.58.3587

15. Desplanques B. Dirac’s inspired point form and hadron form-factors. Nuclear Physics A, 2005, vol. 755, pp. 303–306. https://doi.org/10.1016/j.nuclphysa.2005.03.032

16. Biernat E. P., Klink W. H., Schweiger W., Zelzer S. Point-form quantum field theory. Annals of Physics, 2008, vol. 323, pp. 1361–1383. https://doi.org/10.1016/j.aop.2007.09.004

17. Gomez-Rocha M. Semileptonic meson decays in point– form relativistic quantum mechanics: unambiguous extraction of weak form factors. Physical Review D, 2014, vol. 7, pp. 076003. https://doi.org/10.1103/PhysRevD.90.076003

18. Allen T. W., Klink W. H., Polyzou W. N. Point-form analysis of elastic deuteron form factors. Physical Review C, 2001, vol. 63, pp. 034002. https://doi.org/10.1103/PhysRevC.63.034002

19. Andreev V. V. QCD coupling constant below 1 GeV in the Poincare-covariant model. Physics of Particles and Nuclei Letters, 2011, vol. 8, pp. 347–355. https://doi.org/10.1134/S1547477111040030

20. Andreev V. V., Haurysh V. Yu. Constituent quark masses in Poincaré-invariant quantum mechanics. Journal of Physics: Conference Series, 2017, vol. 938, pp. 1–5. https://doi.org/10.1088/1742-6596/938/1/012030

21. Andreev V. V., Haurysh V. Yu. Radiative decays of light vector mesons in Poincare– invariant quantum mechanics. Journal of Physics: Conference Series, 2016, vol. 678, pp. 1–5. https://doi.org/10.1088/1742-6596/678/1/012041

22. Andreev V. V., Haurush V. Yu., Krutov A. F. Method of calculation of electroweak characteristics of mesons in the Poincaré-invariant quantum mechanics. Problemy Fiziki, Matematiki i Tekhniki = Problems of Physics, Mathematics and Technics, 2018, vol. 1 (34), pp. 7–19. https://doi.org/mathnet.ru/pfmt545

23. Tanabashi M., Hagiwara K., Hikasa K., Nakamura K., Sumino Y., Takahashi F. [et al.]. Review of Particle Physics. Physical Review D, 2018, vol. 98, pp. 030001. https://doi.org/10.1103/PhysRevD.98.030001

24. Ambrosino F., Antonelli A., Anton M., Archilli F., Beltrame P., Bencivenni G. [et al.]. Physics at KLOE. Proceedings of Science, 2009, vol. CD09, pp. 45. https://doi.org/10.22323/1.086.0045

25. Feldmann T., Kroll P., Stech B. Mixing and decay constants of pseudoscalar mesons: The Sequel. Physics Letters B, 1999, vol. 448, pp. 339–346. https://doi.org/10.1016/S0370-2693(99)00085-4

26. Kokkedee J. The Quark Model. New York, Amsterdam, W. A. Benjamin Inc., 1969. 239 p.

27. Andreev V. V, Haurysh, V. Yu. Electroweak decays of unflavored mesons in Poincare covariant quark model. Turkish Journal of Physics, 2019, vol. 43, pp. 167–177. https://doi.org/10.3906/fiz-1810-24

28. Petronzio R., Simula S., Ricco G. Possible evidence of extended objects inside the proton. Physical Review D, 2003, vol. 67, pp. 094994. https://doi.org/10.1103/PhysRevD.67.094004

29. Ito H. Flavor SU(3) symmetty in the anomalous magnetic moments of constituent quarks. Physics Letters B, 1995, vol. 353, pp. 13–19. https://doi.org/10.1016/0370-2693(95)00443-O

30. Fayazbakhsh Sh., Sadooghi N. Anomalous magnetic moment of hot quarks, inverse magnetic catalysis, and reentrance of the chiral symmetry broken phase. Physical Review D, 2014, vol. 90, pp. 105030. https://doi.org/10.1103/PhysRevD.90.105030

31. Qian W., Ma B.-Q. Vector meson ω–φ mixing and their form factors in the light-cone quark model. Physical Review D, 2008, vol. 78, pp. 074002. https://doi.org/10.1103/PhysRevD.78.074002

32. Schneider S. P., Kibus B., Frans N. ω → π 0 γ* Transition form factors in dispersion theory. Physical Review D, 2012, vol. 86, pp. 054013. https://doi.org/10.1103/PhysRevD.91.094029

33. Cardarelli F., Grach I. L., Narodetsky I. M., Pace E., Salme G., Simula S. Charge form-factor of π ± and K ± mesons. Physical Review D, 1996, vol. 53, pp. 6682–6685. https://doi.org/10.1103/PhysRevD.53.6682


Review

Views: 886


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)