Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Zero mass field with the spin 3/2: solutions of the wave equation and the helicity operator

https://doi.org/10.29235/1561-2430-2019-55-3-338-354

Abstract

The wave equation for the vector bispinor Ψa(x), which describes a zero mass spin 3/2 particle in the Rarita – schwinger form, is transformed into a new basis of Ψa(x), in which the gauge symmetry in the theory becomes evident: there exist solutions in the form of the 4-gradient of an arbitrary bispinor Ψa0(x) = ∂аΨ(x), For 16-component equation in this new basis, two independent solutions are constructed in explicit form, which do not contain any gauge constituents. Zero mass solutions are transformed into linear combinations of helicity states, the derived formulas contain the terms with all helicities σ = ±1/2, ±3/2.

About the Authors

A. V. Ivashkevich
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Alina V. Ivashkevich – Master Student

68-2, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus



E. M. Ovsiyuk
Mozyr State Pedagogical University named after I. P. Shamyakin
Belarus

Еlena М. Оvsiyuk – Ph. D. (Physics and Mathematics), Assistant Professor

28, Studencheskaya Str., 247760, Mozyr, Gomel region, Republic of Belarus



V. M. Red’kov
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Belarus

Viktor M. Red’kov – Dr. Sc. (Physics and Mathematics), Chief Researcher of the Center “Fundamental Interactions and Astrophysics”

68-2, Nezavisimosti Ave., 220072, Minsk, Republic of Belarus



References

1. Pauli W., Fierz M. Über relativistische Feldleichungen von Teilchen mit beliebigem Spin im elektromagnetishen Feld. Helvetica Physica Acta, 1939, Bd. 12, S. 297–300.

2. Fierz M., Pauli W. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1939, vol. 173, no. 953, pp. 211–232. https://doi.org/10.1098/rspa.1939.0140

3. Rarita W., Schwinger J. On a theory of particles with half-integral spin. Physical Review D, 1941, vol. 60, no. 1, pp. 61–64. https://doi.org/10.1103/physrev.60.61

4. Ginzburg V. L. K To the theory of particles of spin 3/2. Zhurnal Eksperimentalnoy i Teoreticheskoy Fiziki = Journal of Experimental and Theoretical Physics, 1942, vol. 12, pp. 425–442 (in Russian).

5. Davydov A. S. Wave equation for a particle with spin 3/2, in absence of external field. Zhurnal Eksperimentalnoy i Teoreticheskoy Fiziki = Journal of Experimental and Theoretical Physics, 1943, vol. 13, pp. 313–319 (in Russian).

6. Johnson K., Sudarshan E. C. G. Inconsistency of the local field theory of charged spin 3/2 particles. Annals of Physics, 1961, vol. 13, no. 1, pp. 126–145. https://doi.org/10.1016/0003-4916(61)90030-6

7. Bender C. M., McCoy Barry M. Peculiarities of a free massless spin-3/2 field theory. Physical Review, 1966, vol. 148, no. 4, pp. 1375–1380. https://doi.org/10.1103/physrev.148.1375

8. Hagen C. R., Singh L. P. S. Search for consistent interactions of the Rarita–Schwinger field. Physical Review D, 1982, vol. 26, no. 2, pp. 393–398. https://doi.org/10.1103/physrevd.26.393

9. Baisya H. L. On the Rarita–Schwinger equation for the vector-bispinor field. Nuclear Physics B, 1971, vol. 29, no. 1, pp. 104–124. https://doi.org/10.1016/0550-3213(71)90213-6

10. Loide R. K. Equations for a vector-bispinor. Journal of Physics A: Mathematical and General, 1984, vol. 17, no. 12, pp. 2535–2550. https://doi.org/10.1088/0305-4470/17/12/024

11. Pletyukhov V. A., Strazhev V. I. Toward a theory of particles with 3/2 spin. Soviet Physics Journal, 1985, vol. 28, no. 1, pp. 78-81. https://doi.org/10.1007/bf00896059

12. Capri A. Z., Kobes R. L. Further problems in spin-3/2 field theories. Physical Review D, 1980, vol. 22, no. 8, pp. 1967–1978. https://doi.org/10.1103/physrevd.22.1967

13. Darkhosh T. Is there a solution to the Rarita–Schwinger wave equation in the presence of an external electromagnetic field? Physical Review D, 1985, vol. 32, no. 12, pp. 3251–3255. https://doi.org/10.1103/physrevd.32.3251

14. Cox W. On the Lagrangian and Hamiltonian constraint algorithms for the Rarita – Schwinger field coupled to an external electromagnetic field. Journal of Physics A: Mathematical and General, 1989, vol. 22, no. 10, pp. 1599–1608. https://doi.org/10.1088/0305-4470/22/10/015

15. Deser S., Waldron A., Pascalutsa V. Massive spin-3/2 electrodynamics. Physical Review D, 2000, vol. 62, no. 10, pp. 105031. https://doi.org/10.1103/physrevd.62.105031

16. Napsuciale M., Kirchbach M., Rodriguez S. Spin-3/2 Beyond Rarita–Schwinger Framework. The European Physical Journal A, 2006, vol. 29, no. 3, pp. 289–306. https://doi.org/10.1140/epja/i2005-10315-8

17. Red’kov V. M. Particle fields in the Riemann space and the Lorents group. Minsk, Belaruskaya navuka Publ., 2009. 486 p. (in Russian).

18. Pletyukhov V. A., Red'kov V. M., Strazhev V. I. Relativistic wave equations and internal degrees of freedom. Minsk, Belaruskaya navuka Publ., 2015. 328 p. (in Russian).

19. Kisel V. V., Ovsiyuk E. M., Balan V., Veko O. V., Red’kov V. M. Elementary particles with internal structure in external field. Vol. I. General formalism. USA, Nova Science Publishers Inc., 2018. 404 p.


Review

Views: 952


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)