1. Elshorbany Y., Barnes I., Becker K. H., Kleffmann J., Wiesen P. Sources and cycling of tropospheric hydroxyl radicals - an overview. Zeitschrift für Physikalische Chemie, 2010, vol. 224, no. 7-8, pp. 967-987. https://doi.org/10.1524/zpch.2010.6136
2. Khlyustova A., Khomyakova N., Sirotkin N., Marfin Yu. The effect of pH on OH radical generation in aqueous solutions by atmospheric pressure glow discharge. Plasma Chemistry and Plasma Processing, 2016, vol. 36, no. 5, pp. 1229- 1238. https://doi.org/10.1007/s11090-016-9732-3
3. H2020 projects with Belarus participations retained for funding (by February 2019). Available at: http://fp7-nip.org.by/ru/hor20/BelPr (accessed 07 June 2019).
4. Poklonski N. A., Ratkevich S. V., Vyrko S. A., Vlassov A. T., Hieu N. N. Quantum chemical calculation of reactions involving C 20 , C 60 , graphene and H 2 O. International Journal of Nanoscience, 2019, vol. 18, no. 3-4, pp. 1940008 (1-5). https://doi.org/10.1142/S0219581X19400088
5. Richards P. M. Correlated hopping conductivity in a general two sublattice structure. The Journal of Chemical Physics, 1978, vol. 68, no. 5, pp. 2125-2128. https://doi.org/10.1063/1.436034
6. Hao T., Xu Y., Hao T. Conductivity equations of protons transporting through 2D crystals obtained with the rate process theory and free volume concept. Chemical Physics Letters, 2018, vol. 698, pp. 67-71. https://doi.org/10.1016/j.cplett.2018.02.059
7. Fishman S. N., Volkenstein M. V. The diffusion of ions across biological membranes. The Journal of Membrane Biology, 1973, vol. 12, no. 1, pp. 189-192. https://doi.org/10.1007/BF01869999
8. Volgin V. M., Davydov A. D. Ionic transport through ion-exchange and bipolar membranes. Journal of Membrane Science, 2005, vol. 259, no. 1, pp. 110-121. https://doi.org/10.1016/j.memsci.2005.03.010
9. Bulay P. M., Molchanov P. G., Cherenkevich S. N., Afanasenkov D. S., Pitlik T. N. Heterogeneous charge transfer across biological membranes. Vestn. BGU. Ser. 1. Fizika. Matematika. Informatika = Vestnik BSU. Series 1: Physics. Mathematics. Informatics, 2008, no. 1, pp. 3-7 (in Russian).
10. Ho M.-W. Water is the means, medium and message of life. International Journal of Design & Nature and Ecodynamics, 2014, vol. 9, no. 1, pp. 1-12. https://doi.org/10.2495/DNE-V9-N1-1-12
11. Sarkisov G. N. Structural models of water. Physics-Uspekhi, 2006, vol. 49, no. 8, pp. 809-820. https://doi.org/10.1070/PU2006v049n08ABEH005824
12. Shmelev V. M., Margolin A. D. Propagation of an electric discharge over the surface of water and semiconductor. High Temperature, 2003, vol. 41, no. 6, pp. 735-741. https://doi.org/10.1023/B:HITE.0000008327.80183.0e
13. Berezin Yu. A., Yanenko N. N. Separation method for problems in semiconductor physics. Soviet Physics. Doklady, 1984, vol. 29, no. 2, pp. 109-110.
14. Poklonski N. A., Kovalev A. I., Vyrko S. A., Vlassov A. T. Semiconductor diode with hopping migration of electrons via point defects of crystalline matrix. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2017, vol. 61, no. 3, pp. 30-37 (in Russian).
15. Poklonski N. A., Vyrko S. A., Zabrodskii A. G. Quasiclassical description of the nearest-neighbor hopping dc conduction via hydrogen-like donors in intermediately compensated GaAs crystals. Semiconductor Science and Technology, 2010, vol. 25, no. 8, pp. 085006 (1-6). https://doi.org/10.1088/0268-1242/25/8/085006
16. Poklonski N. A., Vyrko S. A., Zabrodskii A. G. Model of hopping dc conductivity via nearest neighbor boron atoms in moderately compensated diamond crystals. Solid State Communications, 2009, vol. 149, no. 31-32, pp. 1248-1253. https://doi.org/10.1016/j.ssc.2009.05.031
17. Wardle B. Principles and Applications of Photochemistry. Chichester, Wiley, 2010. xiv+250 p.
18. Koryta J., Dvořák J., Kavan L. Principles of Electrochemistry. Chichester, Wiley, 1993. xvi+486 p.
19. Allnatt A. R., Lidiard A. B. Atomic Transport in Solids. Cambridge, Cambridge University Press, 2003. xxiv+572 p.
20. Mason E. A., McDaniel E. W. Transport Properties of Ions in Gases. New York, Wiley, 1988. xiv+560 p. https://doi.org/10.1002/3527602852
21. Silbey R. J., Alberty R. A., Bawendi M. G. Physical Chemistry. New York, Wiley, 2005. viii+944 p.
22. Tonkonogov M. P. Dielectric spectroscopy of hydrogen-bonded crystals, and proton relaxation. Physics-Uspekhi, 1998, vol. 41, no. 1, pp. 25-48. https://doi.org/10.1070/PU1998v041n01ABEH000328
23. Kondepudi D., Prigogine I. Modern Thermodynamics. From Heat Engines to Dissipative Structures. Chichester, Wiley, 2015. xxvi+523 p. https://doi.org/10.1002/9781118698723