Diffusion-drift model of ion migration over interstitial sites of a two-dimensional lattice
https://doi.org/10.29235/1561-2430-2019-55-3-355-365
Abstract
An analytical and numerical modeling of the process of obtaining hydroxyl radicals OH0 and atomic hydrogen H0 from water molecules on a square lattice based on electrical neutralization of ions OH− on an anode and ions H+ on a cathode is conducted. The numerical solution of a system of equations describing a stationary migration of ions H+ and OH− over the interstitial sites of a square lattice located in an external electric field is considered. The ions H+ and OH− in the interstitial sites of a square lattice are generated as a result of dissociation of a water molecule under the action of external electromagnetic radiation and external constant (stationary) electric field. It is assumed that anode and cathode are unlimited ion sinks. The problem is solved using the finite difference approximation for the initial system of differential equations with the construction of an iterative process due to the nonlinearity of the constituent equations. It is shown by using calculation that the dependence of the ion current on a difference of electric potentials between anode and cathode is sublinear.
Keywords
About the Authors
N. A. PoklonskiBelarus
Nikolai A. Poklonski – Dr. Sc. (Physics and Mathematics), Professor
4, Nezavisimo sti Ave., 220030, Minsk, Republic of Belarus
A. O. Bury
Belarus
Artsiom A. Bury – Master Student
4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus
N. G. Abrashina-Zhadaeva
Belarus
Natalia G. Abrashina-Zhadaeva – Dr. Sc. (Physics and Mathematics), Associate Professor
4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus
S. A. Vyrko
Belarus
Sergey A. Vyrko – Ph. D. (Physics and Mathematics), Senior Researcher
4, Nezavisimosti Ave., 220030, Minsk, Republic of Belarus
References
1. Elshorbany Y., Barnes I., Becker K. H., Kleffmann J., Wiesen P. Sources and cycling of tropospheric hydroxyl radicals – an overview. Zeitschrift für Physikalische Chemie, 2010, vol. 224, no. 7–8, pp. 967–987. https://doi.org/10.1524/zpch.2010.6136
2. Khlyustova A., Khomyakova N., Sirotkin N., Marfin Yu. The effect of pH on OH radical generation in aqueous solutions by atmospheric pressure glow discharge. Plasma Chemistry and Plasma Processing, 2016, vol. 36, no. 5, pp. 1229– 1238. https://doi.org/10.1007/s11090-016-9732-3
3. H2020 projects with Belarus participations retained for funding (by February 2019). Available at: http://fp7-nip.org.by/ru/hor20/BelPr (accessed 07 June 2019).
4. Poklonski N. A., Ratkevich S. V., Vyrko S. A., Vlassov A. T., Hieu N. N. Quantum chemical calculation of reactions involving C 20 , C 60 , graphene and H 2 O. International Journal of Nanoscience, 2019, vol. 18, no. 3–4, pp. 1940008 (1–5). https://doi.org/10.1142/S0219581X19400088
5. Richards P. M. Correlated hopping conductivity in a general two sublattice structure. The Journal of Chemical Physics, 1978, vol. 68, no. 5, pp. 2125–2128. https://doi.org/10.1063/1.436034
6. Hao T., Xu Y., Hao T. Conductivity equations of protons transporting through 2D crystals obtained with the rate process theory and free volume concept. Chemical Physics Letters, 2018, vol. 698, pp. 67–71. https://doi.org/10.1016/j.cplett.2018.02.059
7. Fishman S. N., Volkenstein M. V. The diffusion of ions across biological membranes. The Journal of Membrane Biology, 1973, vol. 12, no. 1, pp. 189–192. https://doi.org/10.1007/BF01869999
8. Volgin V. M., Davydov A. D. Ionic transport through ion-exchange and bipolar membranes. Journal of Membrane Science, 2005, vol. 259, no. 1, pp. 110–121. https://doi.org/10.1016/j.memsci.2005.03.010
9. Bulay P. M., Molchanov P. G., Cherenkevich S. N., Afanasenkov D. S., Pitlik T. N. Heterogeneous charge transfer across biological membranes. Vestn. BGU. Ser. 1. Fizika. Matematika. Informatika = Vestnik BSU. Series 1: Physics. Mathematics. Informatics, 2008, no. 1, pp. 3–7 (in Russian).
10. Ho M.-W. Water is the means, medium and message of life. International Journal of Design & Nature and Ecodynamics, 2014, vol. 9, no. 1, pp. 1–12. https://doi.org/10.2495/DNE-V9-N1-1-12
11. Sarkisov G. N. Structural models of water. Physics-Uspekhi, 2006, vol. 49, no. 8, pp. 809–820. https://doi.org/10.1070/PU2006v049n08ABEH005824
12. Shmelev V. M., Margolin A. D. Propagation of an electric discharge over the surface of water and semiconductor. High Temperature, 2003, vol. 41, no. 6, pp. 735–741. https://doi.org/10.1023/B:HITE.0000008327.80183.0e
13. Berezin Yu. A., Yanenko N. N. Separation method for problems in semiconductor physics. Soviet Physics. Doklady, 1984, vol. 29, no. 2, pp. 109–110.
14. Poklonski N. A., Kovalev A. I., Vyrko S. A., Vlassov A. T. Semiconductor diode with hopping migration of electrons via point defects of crystalline matrix. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2017, vol. 61, no. 3, pp. 30–37 (in Russian).
15. Poklonski N. A., Vyrko S. A., Zabrodskii A. G. Quasiclassical description of the nearest-neighbor hopping dc conduction via hydrogen-like donors in intermediately compensated GaAs crystals. Semiconductor Science and Technology, 2010, vol. 25, no. 8, pp. 085006 (1–6). https://doi.org/10.1088/0268-1242/25/8/085006
16. Poklonski N. A., Vyrko S. A., Zabrodskii A. G. Model of hopping dc conductivity via nearest neighbor boron atoms in moderately compensated diamond crystals. Solid State Communications, 2009, vol. 149, no. 31–32, pp. 1248–1253. https://doi.org/10.1016/j.ssc.2009.05.031
17. Wardle B. Principles and Applications of Photochemistry. Chichester, Wiley, 2010. xiv+250 p.
18. Koryta J., Dvořák J., Kavan L. Principles of Electrochemistry. Chichester, Wiley, 1993. xvi+486 p.
19. Allnatt A. R., Lidiard A. B. Atomic Transport in Solids. Cambridge, Cambridge University Press, 2003. xxiv+572 p.
20. Mason E. A., McDaniel E. W. Transport Properties of Ions in Gases. New York, Wiley, 1988. xiv+560 p. https://doi.org/10.1002/3527602852
21. Silbey R. J., Alberty R. A., Bawendi M. G. Physical Chemistry. New York, Wiley, 2005. viii+944 p.
22. Tonkonogov M. P. Dielectric spectroscopy of hydrogen-bonded crystals, and proton relaxation. Physics-Uspekhi, 1998, vol. 41, no. 1, pp. 25–48. https://doi.org/10.1070/PU1998v041n01ABEH000328
23. Kondepudi D., Prigogine I. Modern Thermodynamics. From Heat Engines to Dissipative Structures. Chichester, Wiley, 2015. xxvi+523 p. https://doi.org/10.1002/9781118698723