Preview

Известия Национальной академии наук Беларуси. Серия физико-математических наук

Пашыраны пошук

О точном и приближенном решениях отдельных дифференциальных уравнений с вариационными производными первого и второго порядков

https://doi.org/10.29235/1561-2430-2020-56-1-51-71

Анатацыя

Рассматривается проблема точного и приближенного решений отдельных дифференциальных уравнений с вариационными производными первого и второго порядков. Приведены некоторые сведения о вариационных производных и явные формулы точных решений простейших уравнений с первыми вариационными производными. Демонстрируется интерполяционный метод для решения обыкновенных дифференциальных уравнений с вариационными производными. Представлена общая схема приближенного решения задачи Коши для нелинейных дифференциальных уравнений с вариационными производными первого порядка, основанная на использовании аппарата операторного интерполирования. Получено точное решение дифференциального уравнения гиперболического типа с вариационными производными, аналогичное классическому решению Даламбера. Рассмотрена эрмитова интерполяционная задача для функционалов, определенных на множествах дифференцируемых функций, с условиями совпадения в узлах интерполируемого и интерполяционного функционалов, а также их вариационных производных первого и второго порядков. Найденное явное представление решения данной интерполяционной задачи основано на произвольной чебышевской системе функций. Оно обобщено на случай интерполирования функционалов по одной из двух переменных и применено для построения приближенного решения задачи Коши для дифференциального уравнения гиперболического типа с вариационными производными. Изложение материала иллюстрируется многочисленными примерами.

Аб аўтарах

М. Игнатенко
Белорусский государственный университет
Беларусь


Л. Янович
Институт математики Национальной академии наук Беларуси
Беларусь


Спіс літаратуры

1. Леви, П. Конкретные проблемы функционального анализа / П. Леви. – М.: Наука, 1967. – 510 с.

2. Вайнберг, М. М. Вариационные методы исследования нелинейных операторов / М. М. Вайнберг. – М.: Гостехиздат, 1956. – 345 с.

3. Вольтерра, В. Теория функционалов, интегральных и интегро-дифференциальных уравнений / В. Вольтера. – М.: Наука, 1982. – 304 с.

4. Далецкий, Ю. Л. Дифференциальные уравнения с функциональными производными и стохастические уравнения для обобщенных случайных процессов / Ю. Л. Далецкий // Докл. АН СССР. – 1966. – Т. 166, № 5. – С. 1035–1038.

5. Задорожний, В. Г. О дифференциальных уравнениях второго порядка в вариационных производных / В. Г. Задорожний // Дифференц. уравнения. – 1989. – Т. 25, № 10. – С. 1679–1683.

6. Данилович, В. П. Формула Коши для линейных уравнений с функциональными производными / В. П. Данилович, И. М. Ковальчик // Дифференц. уравнения. – 1977. – Т. 13, № 8. – С. 1509–1511.

7. Ковальчик, И. М. Представление решений некоторых уравнений с функциональными производными с помощью интегралов Винера / И. М. Ковальчик // Докл. АН УССР. Сер. А, Физ.-мат. и техн. науки. – 1978. – Т. 12. – С. 1079–1083.

8. Ковальчик, И. М. Линейные уравнения с функциональными производными / И. М. Ковальчик // Докл. АН СССР. – 1970. – Т. 194, № 4. – С. 763–766.

9. Далецкий, Ю. Л. Бесконечномерные эллиптические операторы и связанные с ними параболические уравнения / Ю. Л. Далецкий // Успехи мат. наук. – 1967. – Т. 22, вып. 4 (136). – С. 3–54.

10. Авербух, В. И. Теория дифференцирования в линейных топологических пространствах / В. И. Авербух, О. Г. Смолянов // Успехи мат. наук. – 1967. – Т. 22, вып. 6 (138). – С. 201–260.

11. Makarov, V. L. Methods of Operator Interpolation / V. L. Makarov, V. V. Khlobystov, L. A. Yanovich. – Київ: Iн-т математики НАН Украïни, 2010. – 516 с. – (Праці Ін-ту математики НАН України. – Vol. 83: Математика та ii застосування).

12. Янович, Л. А. Основы теории интерполирования функций матричных переменных / Л. А. Янович, М. В. Игнатенко. – Минск: Беларус. навука, 2016. – 281 с.

13. Янович, Л. А. Интерполяционные функциональные многочлены ньютонова типа с двукратными узлами / Л. А. Янович, М. В. Игнатенко // Аналитические методы анализа и дифференциальных уравнений: сб. науч. тр. – Минск: Изд. центр БГУ, 2012. – С. 229–240.

14. Янович, Л. А. Об одном классе интерполяционных многочленов для нелинейных обыкновенных дифференциальных операторов / Л. А. Янович, М. В. Игнатенко // Мат. моделирование. – 2014. – Т. 26, № 11. – С. 90–96.

15. Янович, Л. А. К теории интерполирования Эрмита – Биркгофа нелинейных обыкновенных дифференциальных операторов / Л. А. Янович, М. В. Игнатенко // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2017. – № 2. – С. 7–23.

16. Игнатенко, М. В. К теории интерполирования дифференциальных операторов произвольного порядка в частных производных / М. В. Игнатенко // Тр. Ин-та математики Нац. акад. наук Беларуси. – 2017. – Т. 25, № 2. – С. 11–20.

17. Игнатенко, М. В. Обобщенные интерполяционные многочлены Эрмита – Биркгофа для дифференциальных операторов произвольного порядка в частных производных / М. В. Игнатенко, Л. А. Янович // Вес. Нац. акад. навук Беларусі. Сер. фіз.-мат. навук. – 2018. – Т. 54, № 2. – С. 149–163. https://doi.org/10.29235/1561-2430-2018-54-2-149-163


##reviewer.review.form##

Праглядаў: 881


Creative Commons License
Кантэнт даступны пад ліцэнзіяй Creative Commons Attribution 3.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)