Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Model of stationary migration of free and hopping via acceptors holes in a crystalline semiconductor

https://doi.org/10.29235/1561-2430-2020-56-1-92-101

Abstract

In the diffusion-drift approximation, we have constructed a phenomenological theory of the coexisting migration of v-band holes and holes by means of hopping from hydrogen-like acceptors in the charge state (0) to acceptors in the charge state (−1). A p-type crystalline semiconductor is considered at a constant temperature, to which an external stationary electric field is applied. In the linear approximation, analytical expressions for the screening length of the static electric field and the length of the diffusion of v-band holes and the holes quasilocalized on acceptors are obtained for the first time. The presented relations, as special cases, contain well-known expressions. It is shown that the hopping migration of holes via acceptors leads to a decrease in the screening length and in the diffusion length.

About the Authors

N. A. Poklonski
Belarusian State University
Belarus

Nikolai A. Poklonski – Dr. Sc. (Physics and Mathematics), Professor

4, Nezavisimosti Ave., 220030, Minsk



A. N. Dzeraviaha
Belarusian State University
Belarus

Aliaksandr N. Dzeraviaha – Postgraduate Student

4, Nezavisimosti Ave., 220030, Minsk



S. A. Vyrko
Belarusian State University
Belarus

Sergey A. Vyrko – Ph. D. (Physics and Mathematics), Senior Researcher

4, Nezavisimosti Ave., 220030, Minsk



References

1. Bennet K. E., Tomshine J. R., Min H.-K., Manciu F. S., Marsh M. P., Paek S. B., Settell M. L., Nicolai E. N., Blaha C. D., Kouzani A. Z., Chang S.-Y., Lee K. H. A diamond-based electrode for detection of neurochemicals in the human brain. Frontiers in Human Neuroscience, 2016, vol. 10, pp. 102 (1–12). https://doi.org/10.3389/fnhum.2016.00102

2. He Y., Lin H., Guo Z., Zhang W., Li H., Huang W. Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Separation and Purification Technology, 2019, vol. 212, pp. 802–821. https://doi.org/10.1016/j.seppur.2018.11.056

3. Shlimak I. S. Neutron transmutation doping in semiconductors: Science and applications. Physics of the Solid State, 1999, vol. 41, no. 5, pp. 716–719. https://doi.org/10.1134/1.1130856

4. Ng K. K. Complete Guide to Semiconductor Devices. New York, Wiley, 2002. xxiv+740 p. https://doi.org/10.1002/9781118014769

5. Poklonski N. A., Vyrko S. A., Poklonskaya O. N., Zabrodskii A. G. Transition temperature from band to hopping direct current conduction in crystalline semiconductors with hydrogen-like impurities: Heat versus Coulomb attraction. Journal of Applied Physics, 2011, vol. 110, no. 12, pp. 123702 (1–7). https://doi.org/10.1063/1.3667287

6. Poklonski N. A., Vyrko S. A., Poklonskaya O. N., Kovalev A. I., Zabrodskii A. G. Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond. Journal of Applied Physics, 2016, vol. 119, no. 24, pp. 245701 (1–10). https://doi.org/10.1063/1.4954281

7. Vasil’ev B. V., Lyuboshits V. L. Virial theorem and some properties of the electron gas in metals. Physics Uspekhi, 1994, vol. 37, no. 4, pp. 345–351. https://doi.org/10.1070/PU1994v037n04ABEH000018

8. Borst T. H., Weis O. Boron-doped homoepitaxial diamond layers: Fabrication, characterization, and electronic applications. Physica Status Solidi A, 1996, vol. 154, no. 1, pp. 423–444. https://doi.org/10.1002/pssa.2211540130

9. Klein T., Achatz P., Kacmarcik J., Marcenat C., Gustafsson F., Marcus J., Bustarret E., Pernot J., Omnes F., Sernelius B. E., Persson C., Ferreira da Silva A., Cytermann C. Metal-insulator transition and superconductivity in boron-doped diamond. Physical Review B, 2007, vol. 75, no. 16, pp. 165313 (1–7). https://doi.org/10.1103/PhysRevB.75.165313

10. Zabrodskii A. G., Andreev A. G., Egorov S. V. Coulomb gap and the metal–insulator transition. Physica Status Solidi B, 1998, vol. 205, no. 1, pp. 61–68. https://doi.org/10.1002/(SICI)1521-3951(199801)205:1<61::AID-PSSB61>3.0.CO;2-S

11. Poklonskii N. A., Lopatin S. Yu. A model of hopping and band DC photoconduction in doped crystals. Physics of the Solid State, 2000, vol. 42, no. 2, pp. 224–229. https://doi.org/10.1134/1.1131150

12. Poklonski N. A. Screening of the electric field in covalent crystals containing point defects. Soviet Physics Journal, 1984, vol. 27, no. 11, pp. 945–947. https://doi.org/10.1007/BF00902146

13. Poklonski N. A., Stelmakh V. F. Screening of electrostatic fields in crystalline semiconductors by electrons hopping over defects. Physica Status Solidi B, 1983, vol. 117, no. 1, pp. 93–99. https://doi.org/10.1002/pssb.2221170109

14. Seeger K. Semiconductor Physics. An Introduction. Berlin, Springer, 2004. x+537 p.

15. Anselm A. Introduction to Semiconductor Theory. Mоscow, Mir Publ., 1981. x+646 p.

16. Poklonski N. A., Vyrko S. A., Kovalev A. I., Dzeraviaha A. N. Drift-diffusion model of hole migration in diamond crystals via states of valence and acceptor bands. Journal of Physics Communications, 2018, vol. 2, no. 1, pp. 015013 (1–14). https://doi.org/10.1088/2399-6528/aa8e26

17. Korn G. A., Korn T. M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. New York, Dover, 2000. xx+1130 p.

18. Poklonski N. A., Kovalev A. I., Vyrko S. A. Drift and diffusion of electrons via two-level (triple-charged) point defects in crystalline semiconductors. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2014, vol. 58, no. 3, pp. 37–43 (in Russian).

19. Debye P., Hückel E. Zur theorie der elektrolyte. Physikalische Zeitschrift, 1923, vol. 24, no. 9, pp. 185–206 (in German).

20. Grundmann M. The Physics of Semiconductors. An Introduction Including Nanophysics and Applications. Berlin, Springer, 2016. xxxix+989 p.

21. Kireev P. S. Semiconductor Physics. Moscow, Mir Publ., 1978. 693 p.

22. Smith R. A. Semiconductors. Cambridge, Cambridge University Press, 1978. xvii+523 p.

23. Hamaguchi C. Basic Semiconductor Physics. Berlin, Springer, 2017. xxii+710 p.

24. Abakumov V. N., Perel V. I., Yassievich I. N. Nonradiative Recombination in Semiconductors. North Holland, Amsterdam, 1991. xvi+320 p.

25. Manifacier J. C., Henisch H. K. The concept of screening length in lifetime and relaxation semiconductors. Journal of Physics and Chemistry of Solids, 1980, vol. 41, no. 11, pp. 1285–1288. https://doi.org/10.1016/0022-3697(80)90166-3


Review

Views: 2717


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)