Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

ON THE COMPATIBILITY OF TRIANGULATIONS AND GEOMETRIC GRAPHS

Abstract

In this article universal sets of points in the plane for compatible triangulations have been found; it is shown that the disjoint compatible matching graph, in general, is not connected; it has been proved that an arbitrary perfect matching has a disjoint compatible spanning tree.

About the Author

V. I. Benediktovich
Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
Belarus


References

1. KrasserH. // Master Thesis, Institute for Theoretical Computer Science, Graz University of Technology. Graz, Austria, 1999.

2. SaarfeldA. // Proc. 3-rd Ann. ACM Sympos. Comput. Geometry. 1987. P. 195-204.

3. Garaa A., Tejel J. // Actas VI Encuentros de Geometria Computational. Barcelona, 1995. P. 169-174.

4. Handbook of Discrete and Computational Geometry/ ed. by J. Goodman and O’Rourke. CRC Press, 1997. Vol. 211.

5. Ishaque M, Souvaine D. L., Toth C. D. // Proc. 27th Annual Symp. On Comput. Geometry. Paris, 2011.

6. Aichholzer O., Bereg S., Dumitrescu A. et al. // Comp. Geometry. 2009. N 42. P. 161-167.

7. Houle M. E., Hurtado F., Noy M, Rivera-Campo E. // Graphs Combin. 2005. Vol. 21, N 3. P. 325-331.

8. Cerny J., Dvorak Z., Jelmek V., Kara J. // Discrete Applied Mathematics. 2007. Vol. 115, N 9. P. 1096-1105.

9. Lee D. T., Lin A. K. // Discrete Comput. Geom. 1986. Vol. 1. P. 201-217.


Review

Views: 783


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)