On one interpolating rational process of Fejer – Hermite
https://doi.org/10.29235/1561-2430-2020-56-3-263-274
Abstract
About the Authors
Ya. A. RoubaBelarus
Yauheni A. Rouba – Dr. Sc. (Physics and Mathematics), Professor, Head of the Department of Fundamental and Applied Mathematics
22, Ozheshko Str., 230023, Grodno
K. A. Smatrytski
Belarus
Kanstantin A. Smatrytski – Ph. D. (Physics and Mathematics), Assistant Professor of the Department of Fundamental and Applied Mathematics
22, Ozheshko Str., 230023, Grodno
Ya. V. Dirvuk
Belarus
Yauheni V. Dirvuk – Ph. D. (Physics and Mathematics), Assistant Professor of the Department of System Programming and Computer Security
22, Ozheshko Str., 230023, Grodno
References
1. Szabados J., Vertesi P. Interpolation of Functions. World Scientific, 1990, 305 p. https://doi.org/10.1142/0861
2. DeVore R., Lorentz G. Constructive Approximation. Berlin, Heidelberg, Springer-Verlag, 1993. 452 p. https://doi.org/10.1007/978-3-662-02888-9
3. Krylov V. I. Approximate Calculation of Integrals. Moscow, Fizmatgiz Publ., 1959. 328 p. (in Russian).
4. Natanson I. P. Constructive Theory of Functions. Moscow, Leningrad: Gostekhizdat Publ., 1949. 688 p. (in Russian).
5. Mills T. Some techniques in approximation theory. Mathematical Scientist, 1980, no. 5, pp. 105–120.
6. Rouba Y. A. Dirvuk Y. V. Estimation of the Lebesgue constant for the rational Lagrange interpolation processes through the Chebyshev – Markov nodes. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2015, no. 4, pp. 32–38 (in Russian).
7. Rusak V. N., Grib N. V. Chebyshev – Markov sine-fractions in approximate integration. Vestsі BDPU. Seryja 3. Fіzіka. Matematyka. Іnfarmatyka. Bіyalogіya. Geagrafіya = Proceedings of BSPU. Series 3. Physics. Mathematics. Informatics. Biology. Geography, 2015, no. 2, pp. 17–20 (in Russian).
8. Rouba Y. A. Smatrytski K. A. Convergence in the mean of rational interpolating processes in the zeroes of Bernstein fractures. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2010, no. 3, pp. 5–9 (in Russian).
9. Min G. Lobbatto-type quadrature formula in rational space. Journal of Computational and Applied Mathematics, 1998, vol. 94, no. 1, pp. 1–12. https://doi.org/10.1016/s0377-0427(98)00068-5
10. Rouba Y., Smatrytski K., Dirvuk Y. Rational quasi-Hermite-Fejer-type interpolation and Lobatto-type quadrature formula with Chebyshev-Markov nodes. Jaen Journal on Approximation, 2015, vol. 7, no. 2, pp. 291–308.
11. Rusak V. N. On interpolation by rational functions with fixed poles. Doklady Akademii nauk BSSR = Doklady of the Academy of Sciences of BSSR, 1962, vol. 4, no. 9, pp. 548–550 (in Russian).
12. Rusak V. N. Rational Functions as Approximation Apparatus. Minsk, Belarusian State University, 1979. 176 p. (in Russian).