Dulac – Cherkas functions for systems equivalent to the van der Pol equation
https://doi.org/10.29235/1561-2430-2020-56-3-275-286
Abstract
About the Author
A. A. HrynBelarus
Aliaksandr A. Hryn – Dr. Sc. (Physics and Mathematics), Assistant Professor, Head of the Department of Mathematical Analysis, Differential Equations and Algebra
22, Ozheshko Str., 230023
References
1. Van der Pol B. On relaxation-oscillations. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1926, vol. 2, no. 11, pp. 978–992. https://doi.org/10.1080/14786442608564127
2. Kuznetsov A. P., Seliverstova E. S., Trubetskov D. I., Tyuryukina L. V. The phenomenon of the van der Pol equation. Izvestiya Vysshikh uchebnykh zavedeniy. Prikladnaya nelineynaya dinamika = Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, no. 4, pp. 3–42 (in Russian).
3. Perko L. Differential equations and dynamical systems. Texts in Applied Mathematics. Vol. 7. Springer-Verlag, 2001. 557 p. https://doi.org/10.1007/978-1-4613-0003-8
4. Andronov A. A., Leontovich E. A., Gordon I. M., Maier A. G. The Theory of Bifurcations of Dynamical Systems on the Plane. Moscоw, Nauka Publ., 1967. 488 p. (in Russian).
5. Andronov A. A., Vitt A. A., Khaikin S. E. Oscillation Theory. Moscоw, Nauka Publ., 1981. 918 p. (in Russian).
6. Cao Y., Liu C. The estimate of the amplitude of limit cycles of symmetric Lienard systems. Journal of Differential Equations, 2017, vol. 262, no. 3, pp. 2025–2038. https://doi.org/10.1016/j.jde.2016.10.034
7. Liénard A. Etude des oscillations entretenues. Revue Génerale de l’Électricité, 1928, vol. 23, pp. 901–912.
8. Van der Pol B., Van der Mark J. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1928, vol. 6, no. 38, pp. 763–992. https://doi.org/10.1080/14786441108564652
9. Mishchenko E. F., Rozov N. Kh. Small-parameter Differential Equations and Relaxation Oscillations. Moscоw, Nauka Publ., 1975. 248 p. (in Russian).
10. Grin А., Schneider K. On some classes of limit cycles of planar dynamical systems. Dynamics of сontinuous, discrete and impulsive systems. Series A: Mathematical Analysis, 2007, vol. 14, no. 5, pp. 641–656.
11. Cherkas L. A., Grin A. A., Schneider K. R. Dulac-Cherkas functions for generalized Liénard systems. Electronic Journal of Qualitative Theory of Differential Equations, 2011, no 35. pp. 1–23. https://doi.org/10.14232/ejqtde.2011.1.35
12. Lynch S. Dynamical Systems with Applications Using Mathematica. Boston, Birkhäuser, 2007. 484 p. https://doi.org/10.1007/978-0-8176-4586-1
13. Schneider K. R. New approach to study the van der Pol equation for large damping. Electronic Journal of Qualitative Theory of Differential Equations, 2018, no. 8, pp. 1–10. https://doi.org/10.14232/ejqtde.2018.1.8
14. Dumortier F., Llibre J., Artes J. C. Qualitative Theory of Planar Differential Systems. Berlin, Heidelberg, Springer, 2006. XVI, 302 p. https://doi.org/10.1007/978-3-540-32902-2
15. Cherkas L. A. The Dulac function for polynomial autonomous systems on a plane. Differential Equations, 1997, vol. 33, no 5. pp. 692–701.
16. Sansone G. Sopra léquazione di A. Liénard delle oscillazioni di relassamento. Annali di Matematica Pura ed Applicata, 1949, vol. 28, no. 1, pp. 153–181. https://doi.org/10.1007/bf02411124