Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Dulac – Cherkas functions for systems equivalent to the van der Pol equation

https://doi.org/10.29235/1561-2430-2020-56-3-275-286

Abstract

The object of this study is an autonomous van der Pol system on a real plane. The subject of the study is the properties of the limit cycle of this system. The main purpose of this paper is to find the localization of the limit cycle on the phase plane and establish its shape for various values of the real parameter of the van der Pol system. Our approach is based on the use of transverse curves related to the Dulac – Cherkas functions and approximating the location of the limit cycle. As the first step, five topologically equivalent systems, including systems with a parameter rotating the vector field, as well as singularly perturbed systems are determined for the van der Pol system. Then, applying the previously elaborated method, we constructed two polynomial Dulac – Cherkas functions for each of three systems from the considered ones in the phase plane for all real nonzero values of the parameter. Using them, transverse curves forming the boundaries of the localization regions of the limit cycle for the van der Pol system are found. Thus, the constructed Dulac – Cherkas functions allow us to determine the location of the limit cycle on the basis of algebraic curves for all real parameter values, including values close to the bifurcation of a limit cycle from the center ovals, the Andronov – Hopf bifurcation, and the bifurcation from a closed trajectory related to a discontinuous periodic solution.

About the Author

A. A. Hryn
Yanka Kupala State University of Grodno
Belarus

Aliaksandr A. Hryn – Dr. Sc. (Physics and Mathematics), Assistant Professor, Head of the Department of Mathematical Analysis, Differential Equations and Algebra

22, Ozheshko Str., 230023



References

1. Van der Pol B. On relaxation-oscillations. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1926, vol. 2, no. 11, pp. 978–992. https://doi.org/10.1080/14786442608564127

2. Kuznetsov A. P., Seliverstova E. S., Trubetskov D. I., Tyuryukina L. V. The phenomenon of the van der Pol equation. Izvestiya Vysshikh uchebnykh zavedeniy. Prikladnaya nelineynaya dinamika = Izvestiya VUZ. Applied Nonlinear Dynamics, 2014, vol. 22, no. 4, pp. 3–42 (in Russian).

3. Perko L. Differential equations and dynamical systems. Texts in Applied Mathematics. Vol. 7. Springer-Verlag, 2001. 557 p. https://doi.org/10.1007/978-1-4613-0003-8

4. Andronov A. A., Leontovich E. A., Gordon I. M., Maier A. G. The Theory of Bifurcations of Dynamical Systems on the Plane. Moscоw, Nauka Publ., 1967. 488 p. (in Russian).

5. Andronov A. A., Vitt A. A., Khaikin S. E. Oscillation Theory. Moscоw, Nauka Publ., 1981. 918 p. (in Russian).

6. Cao Y., Liu C. The estimate of the amplitude of limit cycles of symmetric Lienard systems. Journal of Differential Equations, 2017, vol. 262, no. 3, pp. 2025–2038. https://doi.org/10.1016/j.jde.2016.10.034

7. Liénard A. Etude des oscillations entretenues. Revue Génerale de l’Électricité, 1928, vol. 23, pp. 901–912.

8. Van der Pol B., Van der Mark J. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1928, vol. 6, no. 38, pp. 763–992. https://doi.org/10.1080/14786441108564652

9. Mishchenko E. F., Rozov N. Kh. Small-parameter Differential Equations and Relaxation Oscillations. Moscоw, Nauka Publ., 1975. 248 p. (in Russian).

10. Grin А., Schneider K. On some classes of limit cycles of planar dynamical systems. Dynamics of сontinuous, discrete and impulsive systems. Series A: Mathematical Analysis, 2007, vol. 14, no. 5, pp. 641–656.

11. Cherkas L. A., Grin A. A., Schneider K. R. Dulac-Cherkas functions for generalized Liénard systems. Electronic Journal of Qualitative Theory of Differential Equations, 2011, no 35. pp. 1–23. https://doi.org/10.14232/ejqtde.2011.1.35

12. Lynch S. Dynamical Systems with Applications Using Mathematica. Boston, Birkhäuser, 2007. 484 p. https://doi.org/10.1007/978-0-8176-4586-1

13. Schneider K. R. New approach to study the van der Pol equation for large damping. Electronic Journal of Qualitative Theory of Differential Equations, 2018, no. 8, pp. 1–10. https://doi.org/10.14232/ejqtde.2018.1.8

14. Dumortier F., Llibre J., Artes J. C. Qualitative Theory of Planar Differential Systems. Berlin, Heidelberg, Springer, 2006. XVI, 302 p. https://doi.org/10.1007/978-3-540-32902-2

15. Cherkas L. A. The Dulac function for polynomial autonomous systems on a plane. Differential Equations, 1997, vol. 33, no 5. pp. 692–701.

16. Sansone G. Sopra léquazione di A. Liénard delle oscillazioni di relassamento. Annali di Matematica Pura ed Applicata, 1949, vol. 28, no. 1, pp. 153–181. https://doi.org/10.1007/bf02411124


Review

Views: 760


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)