Аналог гипотезы Брауэра для беззнакового лапласиана кографов
https://doi.org/10.29235/1561-2430-2020-56-3-310-317
Аннотация
Ключевые слова
Об авторе
В. И. БенедиктовичБеларусь
Бенедиктович Владимир Иванович – кандидат физико-математических наук, ведущий научный сотрудник
ул. Сурганова, 11, 220072, г. Минск
Список литературы
1. Hua Bai. Grone-Merris Conjecture / Hua Bai // Trans. Amer. Math. Soc. – 2011. – Vol. 363, № 8. – P. 4463–4474. https://doi.org/10.1090/s0002-9947-2011-05393-6
2. Grone, R. The Laplacian Spectrum of a Graph II / R. Grone, R. Merris // SIAM J. Discr. Math. – 1994. – Vol. 7, № 2. – P. 221–229. https://doi.org/10.1137/s0895480191222653
3. Brouwer, A. E. Spectra of Graphs / A. E. Brouwer, W. H. Haemers. – New York: Springer, 2012. – 250 р. https://doi.org/10.1007/978-1-4614-1939-6
4. Ashraf, F. On the sum of signless Laplacian eigenvalues of a graph / F. Ashraf, G. R. Omidi, B. Tayfeh-Rezaie // Linear Algebra Appl. – 2013. – Vol. 438, № 11. – P. 4539–4546. https://doi.org/10.1016/j.laa.2013.01.023
5. Chvátal, V. Set-packing and threshold graphs. Technical Report Rep., CORR 73–21 / V. Chvátal, P. L. Hammer; Comp. Sci. Dept. Univ. of Waterloo. – Ontario, 1973.
6. Jieshan Yang. On a conjecture for the signless Laplacian eigenvalues / Jieshan Yang, Lihua You // Linear Algebra Appl. – 2014. – Vol. 446. – P. 115–132. https://doi.org/10.1016/j.laa.2013.12.032