Bessel-like light beams formed by the two-component scheme consisting of an axicon and a spherical lens
https://doi.org/10.29235/1561-2430-2020-56-3-373-383
Abstract
About the Authors
N. A. KhiloBelarus
Nikolai A. Khilo – Ph. D. (Physics and Mathematics), Leading Scientific Researcher
68-2, Nezavisimosti Ave., 220072, Minsk
P. I. Ropot
Belarus
Piotr I. Ropot – Ph. D. (Physics and Mathematics), Deputy Head of the Center ”Diagnostic Systems”
68-2, Nezavisimosti Ave., 220072, Minsk
P. K. Petrov
Belarus
Piotr K. Petrov – Ph. D. (Physics and Mathematics), Leading Scientific Researcher
68-2, Nezavisimosti Ave., 220072, Minsk
V. N. Belyi
Belarus
Vladimir N. Belyi – Corresponding Member, Dr. Sc. (Physics and Mathematics), Professor, Head of the Center ”Diagnostic Systems”
68-2, Nezavisimosti Ave., 220072, Minsk
References
1. Belanger P., Rioux M. Ring pattern of a lens-axicon doublet illuminated by a Gaussian beam. Applied Optics, 1978, vol. 17, no. 7, pp. 1080–1086. https://doi.org/10.1364/ao.17.001080
2. Rioux M., Tremblay R., Bélanger P. A. Linear, annular, and radial focusing with axicons and applications to laser machining. Applied Optics, 1978, vol. 17, no. 10, pp. 1532–1536. https://doi.org/10.1364/ao.17.001532
3. Baida Lü, Wenlong Huang, Bin Zhang, Fanlong Kong, Qun Zhai. Focusing properties of Bessel beams. Optics Communications, 1996, vol. 131, no. 4–6, pp. 223–228. https://doi.org/10.1016/0030-4018(96)00274-x
4. De Angelis M., Cacciapuoti L., Pierattini G., Tino G. Axially symmetric hollow beams using refractive conical lenses. Optics Laser Engineering, 2003, vol. 39, no. 3, pp. 283–291. https://doi.org/10.1016/s0143-8166(01)00117-8
5. Parigger Ch., Tang Y., Plemmons D. H., Lewis J. W. L. Spherical aberration effects in lens-axicon doublets: theoretical study. Applied Optics, 1997, vol. 36, no. 31, pp. 8214–8221. https://doi.org/10.1364/ao.36.008214
6. Manek I., Ovchinnikov Y. B., Grimm R. Generation of a hollow laser beam for atom trapping using and axicon. Optics Communications, 1998, vol. 147, no. 1–3, pp. 67–70. https://doi.org/10.1016/s0030-4018(97)00645-7
7. Chávez-Cerda S., New G. H. C. Evolution of focused Hankel waves and Bessel beams. Optics Communications, 2000, vol. 181, no. 4–6, pp. 369– 377. https://doi.org/10.1016/s0030-4018(00)00779-3
8. Ming-Dar Wei, Wen-Long Shiao, Yi-Tse Lin. Adjustable generation of bottle and hollow beams using an axicon. Optics Communications, 2005, vol. 248, no. 1–3, pp. 7–14. https://doi.org/10.1016/j.optcom.2004.11.092
9. Arlt J., Padgett M. J. Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Optics Letters, 2000, vol. 25, no. 4, pp. 191–193. https://doi.org/10.1364/ol.25.000191
10. Chowdhury I. S., Roberts R. P., Molina-Terriza G., Vidal X. Lens-axicon separation to tailor aberration free focused Bessel-Gaussian beams in the paraxial regime. Optics Express, 2019, vol. 27, no. 8, pp. 11160–11173. https://doi.org/10.1364/oe.27.011160
11. Belyi V., Forbes A., Kazak N., Khilo N., and Ropot P. Bessel-like beams with z-dependent cone angles. Optics Express, 2010, vol. 18, no. 3, pp. 1966–1973. https://doi.org/10.1364/oe.18.001966
12. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integrals and arrays. Volume 2. Moscow, Fizmatlit Publ., 2003. 664 p. (in Russian).
13. Guattari G., Padovani C., Gori F. Bessel-Gauss beams. Optics Communications, 1987, vol. 64, no. 6, pp. 491–495. https://doi.org/10.1016/0030-4018(87)90276-8
14. Efremidis N. K., Christodoulides D. N. Abruptly autofocusing waves. Optics Letters, 2010, vol. 35, no. 23, pp. 4045–4047. https://doi.org/10.1364/ol.35.004045