1. Walker, D. A. G. The shape of large surface waves on the open sea and the Draupner New Year wave / D. A. G Walker, P. H Taylor., R. E Taylor // Appl. Ocean Res. - 2004. - Vol. 26, № 3/4. - P. 73-83. https://doi.org/10.1016/j.apor2005.02.001
2. Statistics of Extreme Events with Application to Climate / H. Abarbanel [et al.] // JASON. - 1992. - JSR-90-30S. https://doi.org/10.1016/j.apor.2005.02.001
3. Alvarado, E. Modeling Large Forest Fires as Extreme Events / E. Alvarado, D. V. Sandberg, S. G. Pickford // Northwest Sci. - 1998. - Vol. 72. - P. 66-75.
4. Embrechts, P. Statistical Methods for Extremal Events / P. Embrechts, C. Klüppelberg, T. Mikosch // Modelling extremal events for insurance and finance. - Berlin: Spring Verlag, 1997. - P. 283-370. https://doi.org/10.1007/978-3-642-33483-2
5. Collision prediction in roundabouts: a comparative study of extreme value theory approaches / F. Orsini [et al.] // Transportmetrica A: Transport Science. - 2019. - Vol. 15, № 2. - P. 556-572. https://doi.org/10.1080/23249935.2018.1515271
6. Carreras, B. A. North American Blackout Time Series Statistics and Implications for Blackout Risk / B. A. Carreras, D. E. Newman, I. Dobson // IEEE Trans. Power Syst. - 2016. - Vol. 31, № 6. - P. 4406-4414. https://doi.org/10.1109/TPWRS.2015.2510627
7. Extreme Value Based Estimation of Critical Single Event Failure Probability [Electronic Resource] / G. I. Zebrev [et al.] // arXiv. - 2019. - Mode of access: https://arxiv.org/abs/1909.07804v1
8. Optical rogue waves/ D. R Solli [et al.] // Nature. - 2007. - Vol. 450, № 7172. - P. 1054-1058. https://doi.org/10.1038/nature06402
9. Spatiotemporal Rogue Events in Optical Multiple Filamentation / S. Birkholz [et al.] // Phys. Rev. Let. - 2013. - Vol. 111, № 24. - P. 243903. https://doi.org/10.1103/PhysRevLett.111.243903
10. Optical rogue wave statistics in laser filamentation / J. Kasparian [et al.] //Opt. Expr. - 2009. - Vol. 17, № 14. - P. 1270-1275. https://doi.org/10.1364/OE.17.012070
11. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity / A. Montina [et al.] // Phys. Rev. Let. - 2009. - Vol. 103, № 17. - P. 173901. https://doi.org/10.1103/PhysRevLett.103.173901
12. Hammani, K. Emergence of extreme events in fiber-based parametric processes driven by a partially incoherent pump wave / K. Hammani, C. Finot, G. Millot // Opt. Lett. - 2009. - Vol. 34, № 8. - P. 1138-1140. https://doi.org/10.1364/OL.34.001138
13. Soto-Crespo, J. M. Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers / J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev // Phys. Rev. E. - 2011. - Vol. 84, № 1. - P. 016604. https://doi.org/10.1103/PhysRevE.84.016604
14. MacPherson, D. C. Quantum Fluctuations in the Stimulated-Raman-Scattering Linewidth / D. C. MacPherson, R. C. Swanson, J. L. Carlsten // Phys. Rev. Lett. - 1988. - Vol. 61, № 1. - P. 66-69. https://doi.org/10.1103/PhysRevLett.61.66
15. Raymer, M. G. Temporal quantum fluctuations in stimulated Raman scattering: Coherent-modes description / M. G. Raymer, Z. W. Li, I. A. Walmsley // Phys. Rev. Lett. - 1989. - Vol. 63, № 15. - P. 1586-1589. https://doi.org/10.1103/PhysRevLett.63.1586
16. Control of transverse spatial modes in transient stimulated Raman amplification / M. D. Duncan [et al.] // J. Opt. Soc. Am. B. - 1990. - Vol. 7, № 7. - P. 1336-1345. https://doi.org/10.1364/JOSAB.7.001336
17. Hammani, K. Extreme statistics in Raman fiber amplifiers: From analytical description to experiments / K. Hammani, A. Picozzi, C. Finot // Opt. Commun. - 2011. - Vol. 284, № 10/11. - P. 2594-2603. https://doi.org/10.1016/j.optcom.2011.01.057
18. Aalto, A. Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering / A. Aalto, G. Genty, J. Toivonen // Opt. Expr. - 2010. - Vol. 18, № 2. - P. 1234-1239. https://doi.org/10.1364/OE.18.001234
19. Monfared, Y. E. Ponomarenko S.A. Non-Gaussian statistics and optical rogue waves in stimulated Raman scattering / Y. E. Monfared, S. A. Ponomarenko // Opt. Expr. - 2017. - Vol. 25, № 6. - P. 5941-05950. https://doi.org/10.1364/OE.25.005941
20. Fabricius, N. Macroscopic Manifestation of Quantum Fluctuations in Transient Stimulated Raman Scattering / N. Fabricius, K. Nattermann, D. von der Linde // Phys. Rev. Lett. - 1984. - Vol. 52, № 2. - P. 113-116. https://doi.org/10.1103/PhysRevLett.52.113
21. Walmsley, I. A. Observation of Macroscopic Quantum Fluctuations in Stimulated Raman Scattering / I. A. Walmsley, M. G. Raymer // Phys. Rev. Lett. - 1983. - Vol. 50, № 13. - P. 962-965. https://doi.org/10.1103/PhysRevLett.50.962
22. Raymer, M. G. III The quantum coherence properties of stimulated Raman scattering / M. G. Raymer, I. A. Walmsley // Progr. Opt. 1990. - Vol. 28. - P. 247-255. https://doi.org/10.1016/S0079-6638(08)70290-7
23. Statistical characteristics of the energies of pulses of forward and backward stimulated Raman scattering under linear, intermediate, and nonlinear scattering conditions / P. A. Apanasevich [et al.] // Sov. J. of Quant. Electron. - 1992. - Vol. 22, N9. - P. 822-827. https://doi.org/10.1070/qe1992v022n09abeh003607
24. Grabtchikov, A. S. Pulse-energy statistics in the linear regime of stimulated Raman scattering with a broad-band pump / A. S. Grabtchikov, A. I. Vodtchits, V. A. Orlovich // Phys. Rev. A. - 1997. - Vol. 56, № 2. - P. 1666-1669. https://doi.org/10.1103/PhysRevA.56.1666
25. Borlaug, D. Extreme Value Statistics in Silicon Photonics / D. Borlaug, S. Fathpour, B. Jalali // IEEE Phot. J. - 2009. - Vol. 1, № 1. - P. 33-39. https://doi.org/10.1109/JPHOT.2009.2025517
26. Increased Stokes pulse energy variation from amplified classical noise in a fiber Raman generator / A. Betlej [et al.] // Opt. Expr. - 2005. - Vol. 13б № 8. - P. 2948-2960. https://doi.org/10.1364/OPEX.13.002948
27. First Stokes pulse energy statistics for cascade Raman generation in optical fiber / J. Chang [et al.] // Opt. Commun. - 1997. - Vol. 139б № 4/6. - P. 227-231. https://doi.org/10.1016/S0030-4018(97)00060-6
28. Headley, C. Noise Characteristics and Statistics of Picosecond Stokes Pulses Generated in Optical Fibers Through Stimulated Raman Scattering / C. Headley, G. P. Agrawal // IEEE J. Quant. Electr. - 1995. - Vol. 31, № 11. - P. 2058-2067. https://doi.org/10.1109/3.469288
29. Physical, chemical, and optical properties of barium nitrate Raman crystal / P. G. Zverev [et al.] // Opt. Mater. - 1999. - Vol. 11, № 4. - P. 315-334. https://doi.org/10.1016/S0925-3467(98)00031-7
30. Self-mode locking at multiple Stokes generation in the Raman laser / V. A. Lisinetskii [et al.] // Opt. Commun. - 2010. - Vol. 283, № 7. - P. 1454-1458. https://doi.org/10.1016/j.optcom.2009.11.047
31. Battle, P. R. Quantum limit on noise in a Raman amplifier / P. R. Battle, R. C. Swanson, J. L. Carlsten // Phys. Rev. A. - 1991. - Vol. 44, № 3. - P. 1992-1930. https://doi.org/10.1103/PhysRevA.44.1922
32. Карамзин, Ю. Н. Математическое моделирование в нелинейной оптике / Ю. Н. Карамзин, А. П. Сухоруков, В. А. Трофимов. - М.: Изд-во Моск. ун-та, 1989. - 154 с.
33. Steady-state Raman gain coefficients of potassium-gadolinium tungstate at the wavelength of 532 nm. / R. V. Chulkov [et al.] // Opt. Mater. - 2015. - Vol. 50. - P. 92-98. https://doi.org/10.1016/j.optmat.2015.10.004
34. Raman gain coefficient of barium nitrate measured for the spectral region of Ti:Sapphire laser / V. A. Lisisnetskii [et al.] // J. Nonlin. Opt. Phys. & Mater. - 2005. - Vol. 14, № 1. - P/ 107-114. https://doi.org/10.1142/s0218863505002530
35. Cavity length matching and optical resonances in a Raman laser with the multimode pump source / R. V. Chulkov [et al.] // Opt. Let. - 2017. - Vol. 42, № 23. - P. 4824-4827. https://doi.org/10.1364/OL.42.004824
36. Statistical characteristics of the pulse energies for forward and backward SRS in linear, intermediate, and nonlinear scattering modes / P. A. Apanasevich [et al.] // Quant. Electron. - 1992. - Vol. 19. - P. 884-890.