Statistics of pulse enrgy fluctuations in a solid-state Raman laser
https://doi.org/10.29235/1561-2430-2020-56-4-459-469
Abstract
About the Authors
R. V. ChulkovBelarus
Ruslan V. Chulkov – Ph. D. (Physics and Mathematics), Head of the Center “Nonlinear optics and activated materials”
Nezavisimosti Ave., 68-2, 220072, Minsk
O. P. Korozhan
Belarus
Olga P. Korozhan – Junior Researcher at the Center “Nonlinear optics and activated materials”
Nezavisimosti Ave., 68-2, 220072, Minsk
V. A. Orlovich
Belarus
Valentin A. Orlovich – Academician of the National Academy of Sciences of Belarus, Dr. Sc. (Physics and Mathematics), Professor, Academician-Secretary of the Department of Physics, Mathematics and Informatics of the National Academy of Sciences of the Republic of Belarus, Supervisor of the Center “Nonlinear optics and activated materials”
Nezavisimosti Ave., 68-2, 220072, Minsk
References
1. Walker D. A. G., Taylor P. H., Taylor R. E. The shape of large surface waves on the open sea and the Draupner New Year wave. Applied Ocean Research, 2004, vol. 26, no. 3–4, pp. 73–83. https://doi.org/10.1016/j.apor2005.02.001
2. Abarbanel H., Koonin S., Levine H., MacDonald G., Rothaus O. Statistics of Extreme Events with Application to Climate. JASON, 1992, JSR-90-30S. https://doi.org/10.1016/j.apor.2005.02.001
3. Alvarado E., Sandberg D. V., Pickford S. G. Modeling Large Forest Fires as Extreme Events. Northwest Science, 1998, vol. 72, pp. 66–75.
4. Embrechts P., Klüppelberg C., Mikosch T. Statistical Methods for Extremal Events. Modelling extremal events for insurance and finance. Berlin, Spring Verlag, 1997, pp. 283–370. https://doi.org/10.1007/978-3-642-33483-2
5. Orsini F., Gecchele G., Gastaldi M., Rossi R. Collision prediction in roundabouts: a comparative study of extreme value theory approaches. Transportmetrica A: Transport Science, 2019, vol. 15, no. 2, pp. 556–572. https://doi.org/10.1080/23249935.2018.1515271
6. Carreras B. A., Newman D. E., Dobson I. North American Blackout Time Series Statistics and Implications for Blackout Risk. IEEE Transactions on Power Systems, 2016, vol. 31, no. 6, pp. 4406–4414. https://doi.org/10.1109/TPWRS.2015.2510627
7. Zebrev G. I, Galimov A. M., Useinov R. G., Fateev I. A. Extreme Value Based Estimation of Critical Single Event Failure Probability. arXiv, 2019. Available at: https://arxiv.org/abs/1909.07804v1
8. Solli D. R., Ropers C., Koonath P., Jalali B. Optical rogue waves, Nature, 2007, vol. 450, no. 7172, pp. 1054–1058. https://doi.org/10.1038/nature06402
9. Birkholz S., Nibbering E. T. J., Brée C., Skupin S., Demircan A., Genty G., Steinmeyer G. Spatiotemporal Rogue Events in Optical Multiple Filamentation. Physical Review Letters, 2013, vol. 111, no. 24, pp. 243903. https://doi.org/10.1103/PhysRevLett.111.243903
10. Kasparian J., Béjot P., Wolf J-P., Dudley J.M. Optical rogue wave statistics in laser filamentation. Optics Express, 2009, vol. 17, no. 14, pp. 1270–1275. https://doi.org/10.1364/OE.17.012070
11. Montina A., Bortolozzo U., Residori S., Arecchi F. T. Non-Gaussian statistics and extreme waves in a nonlinear optical cavity. Physical Review Letters, 2009, vol. 103, no. 17, pp. 173901. https://doi.org/10.1103/PhysRevLett.103.173901
12. Hammani K., Finot C., Millot G. Emergence of extreme events in fiber-based parametric processes driven by a partially incoherent pump wave. Optics Letters, 2009, vol. 34, no. 8, pp. 1138–1140. https://doi.org/10.1364/OL.34.001138
13. Soto-Crespo J. M., Grelu Ph., Akhmediev N. Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers. Physical Review E, 2011, vol. 84, no. 1, pp. 016604. https://doi.org/10.1103/PhysRevE.84.016604
14. MacPherson D. C., Swanson R. C., Carlsten J. L. Quantum Fluctuations in the Stimulated-Raman-Scattering Linewidth. Physical Review Letters, 1988, vol. 61, no. 1, pp. 66–69. https://doi.org/10.1103/PhysRevLett.61.66
15. Raymer M. G., Li Z. W., Walmsley I. A. Temporal quantum fluctuations in stimulated Raman scattering: Coherent-modes description. Physical Review Letters, 1989, vol. 63, no, 15, pp. 1586–1589. https://doi.org/10.1103/PhysRevLett.63.1586
16. Duncan M. D., Mahon R., Tankersley L. L., Reintjes J. Control of transverse spatial modes in transient stimulated Raman amplification. Journal of the Optical Society of America B, 1990, vol. 7, no. 7, pp. 1336–1345. https://doi.org/10.1364/JOSAB.7.001336
17. Hammani K., Picozzi A., Finot C., Extreme statistics in Raman fiber amplifiers: From analytical description to experiments. Optics Communications, 2011, vol. 284, no. 10–11, pp. 2594–2603. https://doi.org/10.1016/j.optcom.2011.01.057
18. Aalto A., Genty G., Toivonen J. Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering. Optics Express, 2010, vol. 18, no. 2, pp. 1234–1239. https://doi.org/10.1364/OE.18.001234
19. Monfared Y. E., Ponomarenko S. A. Non-Gaussian statistics and optical rogue waves in stimulated Raman scattering. Optics Express, 2017, vol. 25, no. 6, pp. 5941–5950. https://doi.org/10.1364/OE.25.005941
20. Fabricius N., Nattermann K., D. von der Linde. Macroscopic Manifestation of Quantum Fluctuations in Transient Stimulated Raman Scattering. Physical Review Letters, 1984, vol. 52, no. 2, pp. 113–116. https://doi.org/10.1103/PhysRevLett.52.113
21. Walmsley I.A., Raymer M. G. Observation of Macroscopic Quantum Fluctuations in Stimulated Raman Scattering. Physical Review Letters, 1983, vol. 50, no. 13, pp. 962–965. https://doi.org/10.1103/PhysRevLett.50.962
22. Raymer M. G., Walmsley I. A. III The quantum coherence properties of stimulated Raman scattering, Progress in Optics, 1990, vol. 28, pp. 247-255. https://doi.org/10.1016/S0079-6638(08)70290-7
23. Apanasevich P. A., Gakhovich D E, Grabchikov A. S., Kilin S. Y., Kozich V P, Kontsevoĭ B. L., Orlovich V A. Statistical characteristics of the energies of pulses of forward and backward stimulated Raman scattering under linear, intermediate, and nonlinear scattering conditions. Soviet Journal of Quantum Electronics, 1992, vol. 22, no. 9, pp. 822–827. https://doi.org/10.1070/qe1992v022n09abeh003607
24. Grabtchikov A. S., Vodtchits A. I., Orlovich V. A., Pulse-energy statistics in the linear regime of stimulated Raman scattering with a broad-band pump. Physical Review A, 1997, vol. 56, no. 2, pp. 1666–1669. https://doi.org/10.1103/PhysRevA.56.1666
25. Borlaug D., Fathpour S., Jalali B. Extreme Value Statistics in Silicon Photonics. IEEE Photonics Journal, 2009, vol. 1, no. 1, pp. 33–39. https://doi.org/10.1109/JPHOT.2009.2025517
26. Betlej A., Schmitt P., Sidereas P., Tracy R., Goedde C. G., Thompson J. R. Increased Stokes pulse energy variation from amplified classical noise in a fiber Raman generator. Optics Express, 2005, vol. 13, no. 8, pp. 2948–2960. https://doi.org/10.1364/OPEX.13.002948
27. Chang J., Baiocchi D., Vas J., Thompson J. R. First Stokes pulse energy statistics for cascade Raman generation in optical fiber. Optics Communications, 1997, vol. 139, no. 4–6, pp. 227-231. https://doi.org/10.1016/S0030-4018(97)00060-6
28. Headley C., Agrawal G. P. Noise Characteristics and Statistics of Picosecond Stokes Pulses Generated in Optical Fibers Through Stimulated Raman Scattering. IEEE Journal of Quantum Electronics, 1995, vol. 31, no. 11, pp. 2058–2067. https://doi.org/10.1109/3.469288
29. Zverev P. G., Basiev T. T., Osiko V. V., Kulkov A. M., Voitsekhovskii V. N. Physical, chemical, and optical properties of barium nitrate Raman crystal. Optical Materials, 1999, vol. 11, no. 4, pp. 315–334. https://doi.org/10.1016/S0925-3467(98)00031-7
30. Lisinetskii V. A., Busko D. N., Chulkov R. V., Grabchikov A. S., Apanasevich P. A., Orlovich V. A. Self-mode locking at multiple Stokes generation in the Raman laser. Optics Communications, 2010, vol. 283, no. 7, pp. 1454–1458. https://doi.org/10.1016/j.optcom.2009.11.047
31. Battle P. R., Swanson R. C., Carlsten J. L. Quantum limit on noise in a Raman amplifier. Physical Review A, 1991, vol. 44, no. 3, pp. 1992–1930. https://doi.org/10.1103/PhysRevA.44.1922
32. Karamzin Y. N., Sukhorukov A. P., Trophimov V. A. Mathematical Modeling in Nonlinear Optics. Moscow, Publishing House of Moscow State University, 1989. 154 p. (in Russian).
33. Chulkov R. V., Markevich V. Y., Orlovich V. A., El-Desouki M.M. Steady-state Raman gain coefficients of potassium-gadolinium tungstate at the wavelength of 532 nm. Optical Materials, 2015, vol. 50, pp. 92–98. https://doi.org/10.1016/j.optmat.2015.10.004
34. Lisisnetskii V. A., Mish-kel’ I. I., Chulkov R. V., Grabtchikov A. S., Apanasevich P. A., Eichler H. J., Orlovich V. A. Raman gain coefficient of barium nitrate measured for the spectral region of Ti:Sapphire laser. Journal of Nonlinear Optical Physics & Materials, 2005, vol. 14, no. 1, pp. 107–114. https://doi.org/10.1142/s0218863505002530
35. Chulkov R. V., Markevich V. Y., Alyamani A. Y., Cheshev E. A., Orlovich V. A. Cavity length matching and optical resonances in a Raman laser with the multimode pump source. Optics Letters, 2017, vol. 42, no. 23, pp. 4824–4827. https://doi.org/10.1364/OL.42.004824
36. Apanasevich P. A., Gakhovich D. E., Killin S. Y., Kozich V. P., Kontsevoi B. L., Orlovich V. A. Statistical characteristics of the pulse energies for forward and backward SRS in linear, intermediate, and nonlinear scattering modes. Quantum Electronics, 1992, vol. 19, pp. 884–890.