Pешение произвольной гладкости одномерного волнового уравнения для задачи со смешанными условиями
https://doi.org/10.29235/1561-2430-2021-57-3-286-295
Анатацыя
В аналитическом виде представлено классическое решение в классе непрерывно дифференцируемых функций произвольного порядка со смешанными граничными условиями в четверти плоскости для волнового уравнения. Граница области состоит из двух перпендикулярных полупрямых. На одной из них задаются условия Коши. Вторая полупрямая разделена на две части: конечный отрезок и оставшаяся часть в виде полупрямой. На отрезке задается условие Дирихле, на второй части в виде полупрямой – условие Неймана. В четверти плоскости определяется классическое решение рассматриваемой задачи при построении которого выписывается частное решение исходного волнового уравнения. Для заданных функций задачи выписываются условия согласования, которые являются необходимыми и достаточными, чтобы решение задачи было классическим высокого порядка гладкости и единственным.
Аб аўтарах
В. КорзюкБеларусь
И. Козловская
Беларусь
В. Соколович
Беларусь
В. Севастюк
Беларусь
Спіс літаратуры
1. Корзюк, В. И. Классическое решение в четверти плоскости смешанной задачи для волнового уравнения / В. И. Корзюк, И. С. Козловская, В. Ю. Соколович // Докл. Нац. акад. наук Беларуси. – 2018. – Т. 62, № 6. – С. 647–651. https://doi.org/10.29235/1561-8323-2018-62-6-647-651
2. Корзюк, В. И. Уравнения математической физики / В. И. Корзюк. – Изд. 2-е, испр. и доп. – М.: Ленанд, 2021. – 480 с.
3. Корзюк, В. И. Решение волнового уравнения в четверти плоскости / В. И. Корзюк, И. С. Козловская, В. Ю. Соколович // Тр. Ин-та математики. – 2020. – Т. 28. № 1/2. – С. 35–50.
4. Корзюк, В. И. Классические решения задач для гиперболических уравнений: курс лекций: в 10 ч. / В. И. Корзюк, И. С. Козловская. – Минск, 2017. – Ч. 1. – 45 с.
5. Корзюк, В. И. Классические решения задач для гиперболических уравнений: курс лекций: в 10 ч. / В. И. Корзюк, И. С. Козловская. – Минск, 2017. – Ч. 2. – 52 с.
6. Корзюк, В. И. Решение задачи Коши для гиперболического уравнения с постоянными коэффициентами в случае двух независимых переменных / В. И. Корзюк, И. С. Козловская // Дифференц. уравнения. – 2012. – Т. 48, № 5. – С. 700–709.
7. Корзюк, В. И. Решение задачи Коши гиперболического уравнения для однородного дифференциального оператора в случае двух независимых переменных / В. И. Корзюк, И. С. Козловская // Докл. Нац. акад. наук Беларуси. – 2011. – Т. 55, № 5. – С. 9–13.
8. Korzyuk, V. I. Caushy problem in half-plan for hyperbolic equation with constant coefficients. Analytic methods of analysis and differential equations / V. I. Korzyuk, I. S. Kozlovskaya, A. I. Kozlov. – AMA Cambridge Scientific Publ., 2014. – P. 45–71.
9. Моисеев, Е. И. Классическое решение задачи с интегральным условием для одномерного волнового уравнения / Е. И. Моисеев, В. И. Корзюк, И. С. Козловская // Дифференц. уравнения. – 2014. – Т. 50, № 10. – С. 1373–1385.
10. Корзюк, В. И. Об условиях согласования в граничных задачах для гиперболических уравнений / В. И. Корзюк, И. С. Козловская // Докл. Нац. акад. наук Беларуси. – 2013. – Т. 57, № 5. – С. 37–42.
11. Ломовцев, Ф. Е. Метод корректировки пробных решений общего волнового уравнения в первой четверти плоскости для минимальной гладкости его правой части // Журн. Белорус. гос. ун-та. Математика. Информатика. – 2017. – № 3. – С. 38–52.