Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Topologically non-trivial solution in a dissipative φ4 model with Lorentz-invariance violation

https://doi.org/10.29235/1561-2430-2021-57-3-347-352

Abstract

In this paper a (1+1)-dimension equation of motion for φ4-theory is considered for the case of simultaneously taking into a account of the processes of dissipation and violation the Lorentz-invariance. A topological non-trivial solution of one-kink type for this equation is constructed in an analytical form. To this end, the modified direct Hirota method for solving the nonlinear partial derivatives equations was used. A modification of the method lead to special conditions on the parameters of the model and the solution.

About the Author

M. A. Knyazev
Belarusian National Technical University
Belarus

Michael A. Knyazev – Dr. Sc. (Physics and Mathematics), Head of the Department of Engineering Mathematics

65, Nezavisimosti Ave., 220013, Minsk



References

1. Knyazev M. A. Kinks in Scalar Model with Damping. Minsk, Tekhnalogiya Publ., 2013. 115 p. (in Russian).

2. Haobo Yan, Yuan Zhong, Yu-Xiao Lui, Kei-ichi Maeda. Kink-antikink collision in a Lorentz-violating φ4 model. Physics Letters B, 2020, vol. 807, pp. 135542 (7 pp.). https://doi.org/10.1016/j.physletb.2020.135542

3. Barreto M. N., Bazeia D., Menezes R. Defect structures in Lorentz and CPT violating scenarios. Physical Review D, 2006, vol. 73, no. 6. https://doi.org/10.1103/PhysRevD.73.065015

4. Rajaraman R. Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory. Amsterdam, North-Holland Publ. Company, 1982. 409 p.

5. Newell A. C. Solitons in Mathematics and Physics. SIAM, 1985. 260 p. http://dx.doi.org/10.1137/1.9781611970227

6. Ablowitz M. J., Segur H. Solitons and Inverse Scattering Transform. SLAM, 1982. 426 p.

7. Cerveró J., Estévez P. G. General elliptic solution for the cubic equation with damping. Physics Letters A, 1986, vol. 114, no. 8–9, pp. 435–436. https://doi.org/10.1016/0375-9601(86)90688-2

8. Geike J. Kink soliton and friction. Physics Letters A, 1986, vol. 116, no. 5, pp. 221–222. https://doi.org/10.1016/0375-9601(86)90136-2

9. Gani V. A., Marjaneh A. M., Blinov P. A. Explicit kinks in higher-order field theories. Physical Review D, vol. 101, no. 12. https://doi.org/10.1103/PhysRevD.101.12507.

10. Christov I. C., Decker R. J., Demirkaya A., Gani V. A., Kevrekidis P. G., Saxena A. Kink-antikink collisions and multi-bounce resonance windows in higher-order field theories. Communications in Nonlinear Science and Numerical Simulation, 2021, vol. 97, pp. 105748. https://doi.org/10.1016/j.cnsns.2021.105748

11. Bazeia D., Belendryasova E., Gani V. A. Scattering of kinks of the sihn-deformed φ4 model. The European Physical Journal C, 2018, vol. 78, no. 4. https://doi.org/10.1140/epjc/s10052-018-5815-z

12. Bazeia D., Belendryasova E., Gani V. A. Scattering of kinks in a non-polynomial model. Journal of Physics: Conference Series, 2017, vol. 934, pp. 012032. https://doi.org/10.1088/1742-6596/934/1/012032

13. Knyazev M. A. A problem on dissipative equation of movement for φ4 theory with a violating the Lorentz-invariance. Priborostroenie-2020: materialy 13-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii, 18–20 noyabrya 2020 g., Minsk [Instrumentation Engineering-2020. Proceedings of the 13th International Scientific and Technical Conference]. Minsk, BNTU, 2020, pp. 256–257 (in Russian).

14. Hietarinta J., Grammaticos B., Ramai A. Integrable trilinear PDE’s. 2004. Available at: https://arxiv.org/abs/solvint/9411003

15. Goldstein P. P. Hints on Hirota Bilinear Method. Acta Physica Polonica A, 2007, vol. 112, no. 6, pp. 1171–1184. https://doi.org/10.12693/aphyspola.112.1171


Review

Views: 665


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)