1. Higgs P.W. Dynamical symmetries in a spherical geometry. I. Journal of Physics A, 1979, vol. 12, no. 4, pp. 309-323. https://doi.org/10.1088/0305-4470/12/3/006
2. Kurochkin Yu. A., Otchik V. S. Analog of the Runge - Lenz vector and energy spectrum in the Kepler problem on a three-dimensional sphere. Doklady academii nauk BSSR [Doklady of the Academy of Sciences of BSSR], 1979, vol. 23, no. 11, pp. 987-990 (in Russian).
3. Bogush A. A., Kurochkin Yu. A., Otchik V. S. The quantum-mechanical Kepler problem in three-dimensional Lobačevskiĭ space. Doklady academii nauk BSSR [Doklady of the Academy of Sciences of BSSR], 1980, vol. 24, no. 1, pp. 19-22 (in Russian).
4. Chung W. S. Holstein-Primakoff realization of Higgs algebra and its q-extension. Modern Physics Letters A, 2014, vol. 29, no. 10, pp. 1450050-1450062. https://doi.org/10.1142/S0217732314500503
5. Frappat L., Gaboriaud J., Vinet L., Vinet S., Zhedanov A. S. The Higgs and Hahn algebras from a Howe duality perspective. Physics Letters A, 2019, vol. 383, no. 14, pp. 1531-1535. https://doi.org/10.1016/j.physleta.2019.02.024
6. Frappat L., Gaboriaud J., Ragoucy E., Vinet L., Vinet S., Zhedanov A. S. The q-Higgs and Askey - Wilson algebras. Nuclear Physics B, 2019, vol. 944, pp. 114632-114645. https://doi.org/10.1016/j.nuclphysb.2019.114632
7. Arik M., Atakishiyev N. M., Wolf K. B. Quantum algebraic structures compatible with the harmonic oscillator Newton equation. Journal of Physics A, 1999, vol. 32, no. 33, pp. L371-L376. https://doi.org/10.1088/0305-4470/32/33/101
8. Daskaloyannis C. Generalized deformed oscillator and nonlinear algebras. Journal of Physics A, 1991, vol. 24, no. 15, pp. L789-L794. https://doi.org/10.1088/0305-4470/24/15/001
9. Zhedanov A. S. The “Higgs algebra” as a ‘quantum’ deformation of SU(2). Modern Physics Letters A, 1992, vol. 07, no. 06, pp. 507-512. https://doi.org/10.1142/S021773239200046X
10. Delbecq C., Quesne C. Nonlinear deformations of SU(2) and SU(1,1) generalizing Witten’s algebra. Journal of Physics A, 1993, vol. 26, no. 4, pp. L127-L134. https://doi.org/10.1088/0305-4470/26/4/001
11. Feranchuk I. D., Komarov L. I. The operator method of the approximate solution of the Schrödinger equation. Physics Letters A, 1982, vol. 88, no. 5, pp. 211-214. https://doi.org/10.1016/0375-9601(82)90229-8
12. Gerry C. C., Silverman S. Approximate energy eigenvalues from a generalized operator method. Physics Letters A, 1983, vol. 95, no. 9, pp. 481-483. https://doi.org/10.1016/0375-9601(83)90501-7
13. Spiridonov V., Vinet L., Zhedanov A. Periodic reduction of the factorization chain and the Hahn polynomials. Journal of Physics A, 1994, vol. 27, no. 18, pp. L669-L676. https://doi.org/10.1088/0305-4470/27/18/005
14. Veselov, A. P., Shabat, A. B. Dressing Chains and Spectral Theory of the Schrödinger Operator. Funktsional′nyi analiz i ego prilozheniya = Functional Analysis and Its Applications, 1993, vol. 27, no. 2, pp. 81-96 (in Russian). https://doi. org/10.1007/BF01085979
15. Macfarlane A. J. On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q. Journal of Physics A, 1994, vol. 22, no. 21, pp. 4581-4588. https://doi.org/10.1088/0305-4470/22/21/020
16. Biedenharn L. C. The quantum group SUq(2) and a q-analogue of the boson operators. Journal of Physics A, 1989, vol. 22, no. 18, pp. L873-L878. https://doi.org/10.1088/0305-4470/22/18/004
17. Floreanini R., Spiridonov V. P., Vinet L. q-Oscillator Realizations of the Quantum Superalgebras SLq(m,n) and OSPq(m,2n). Communications in Mathematical Physics, 1991, vol. 137, no. 1, pp. 149-160. https://doi.org/10.1007/BF02099120