The q-analogue of the Higgs algebra
https://doi.org/10.29235/1561-2430-2021-57-4-447-454
Abstract
In this paper, the q-generalization of the Higgs algebra is considered. The realization of this algebra is shown in an explicit form using a nonlinear transformation of the creation-annihilation operators of the q-harmonic oscillator. This transformation is the performance of two operations, namely, a “correction” using a function of the original Hamiltonian, and raising to the fourth power the creation and annihilation operators of a q-harmonic oscillator. The choice of the “correcting” function is justified by the standard form of commutation relations for the operators of the metaplectic realization Uq(SU(1,1)). Further possible directions of research are briefly discussed to summarize the results obtained. The first direction is quite obvious. It is the consideration of the problem when the dimension of the operator space increases or for any value N. The second direction can be associated with the analysis of the relationship between q-generalizations of the Higgs and Hahn algebras.
About the Authors
A. N. LavrenovBelarus
Alexandre N. Lavrenov – Ph. D. (Physics and Mathematics), Associate Professor, Associate Professor of the Department of the Chair of Information Technologies in Education
18, Sovetskaya Str., 220050
I. A. Lavrenov
Belarus
Ivan A. Lavrenov – Leading Specialist
25, Ya. Kupala Str., 220030, Minsk
References
1. Higgs P.W. Dynamical symmetries in a spherical geometry. I. Journal of Physics A, 1979, vol. 12, no. 4, pp. 309–323. https://doi.org/10.1088/0305-4470/12/3/006
2. Kurochkin Yu. A., Otchik V. S. Analog of the Runge – Lenz vector and energy spectrum in the Kepler problem on a three-dimensional sphere. Doklady academii nauk BSSR [Doklady of the Academy of Sciences of BSSR], 1979, vol. 23, no. 11, pp. 987–990 (in Russian).
3. Bogush A. A., Kurochkin Yu. A., Otchik V. S. The quantum-mechanical Kepler problem in three-dimensional Lobačevskiĭ space. Doklady academii nauk BSSR [Doklady of the Academy of Sciences of BSSR], 1980, vol. 24, no. 1, pp. 19–22 (in Russian).
4. Chung W. S. Holstein-Primakoff realization of Higgs algebra and its q-extension. Modern Physics Letters A, 2014, vol. 29, no. 10, pp. 1450050–1450062. https://doi.org/10.1142/S0217732314500503
5. Frappat L., Gaboriaud J., Vinet L., Vinet S., Zhedanov A. S. The Higgs and Hahn algebras from a Howe duality perspective. Physics Letters A, 2019, vol. 383, no. 14, pp. 1531–1535. https://doi.org/10.1016/j.physleta.2019.02.024
6. Frappat L., Gaboriaud J., Ragoucy E., Vinet L., Vinet S., Zhedanov A. S. The q-Higgs and Askey – Wilson algebras. Nuclear Physics B, 2019, vol. 944, pp. 114632–114645. https://doi.org/10.1016/j.nuclphysb.2019.114632
7. Arik M., Atakishiyev N. M., Wolf K. B. Quantum algebraic structures compatible with the harmonic oscillator Newton equation. Journal of Physics A, 1999, vol. 32, no. 33, pp. L371–L376. https://doi.org/10.1088/0305-4470/32/33/101
8. Daskaloyannis C. Generalized deformed oscillator and nonlinear algebras. Journal of Physics A, 1991, vol. 24, no. 15, pp. L789–L794. https://doi.org/10.1088/0305-4470/24/15/001
9. Zhedanov A. S. The “Higgs algebra” as a ‘quantum’ deformation of SU(2). Modern Physics Letters A, 1992, vol. 07, no. 06, pp. 507–512. https://doi.org/10.1142/S021773239200046X
10. Delbecq C., Quesne C. Nonlinear deformations of SU(2) and SU(1,1) generalizing Witten’s algebra. Journal of Physics A, 1993, vol. 26, no. 4, pp. L127–L134. https://doi.org/10.1088/0305-4470/26/4/001
11. Feranchuk I. D., Komarov L. I. The operator method of the approximate solution of the Schrödinger equation. Physics Letters A, 1982, vol. 88, no. 5, pp. 211–214. https://doi.org/10.1016/0375-9601(82)90229-8
12. Gerry C. C., Silverman S. Approximate energy eigenvalues from a generalized operator method. Physics Letters A, 1983, vol. 95, no. 9, pp. 481–483. https://doi.org/10.1016/0375-9601(83)90501-7
13. Spiridonov V., Vinet L., Zhedanov A. Periodic reduction of the factorization chain and the Hahn polynomials. Journal of Physics A, 1994, vol. 27, no. 18, pp. L669–L676. https://doi.org/10.1088/0305-4470/27/18/005
14. Veselov, A. P., Shabat, A. B. Dressing Chains and Spectral Theory of the Schrödinger Operator. Funktsional′nyi analiz i ego prilozheniya = Functional Analysis and Its Applications, 1993, vol. 27, no. 2, pp. 81–96 (in Russian). https://doi. org/10.1007/BF01085979
15. Macfarlane A. J. On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q. Journal of Physics A, 1994, vol. 22, no. 21, pp. 4581–4588. https://doi.org/10.1088/0305-4470/22/21/020
16. Biedenharn L. C. The quantum group SUq(2) and a q-analogue of the boson operators. Journal of Physics A, 1989, vol. 22, no. 18, pp. L873–L878. https://doi.org/10.1088/0305-4470/22/18/004
17. Floreanini R., Spiridonov V. P., Vinet L. q-Oscillator Realizations of the Quantum Superalgebras SLq(m,n) and OSPq(m,2n). Communications in Mathematical Physics, 1991, vol. 137, no. 1, pp. 149–160. https://doi.org/10.1007/BF02099120