Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

The q-analogue of the Higgs algebra

https://doi.org/10.29235/1561-2430-2021-57-4-447-454

Abstract

In this paper, the q-generalization of the Higgs algebra is considered. The realization of this algebra is shown in an explicit form using a nonlinear transformation of the creation-annihilation operators of the q-harmonic oscillator. This transformation is the performance of two operations, namely, a “correction” using a function of the original Hamiltonian, and raising to the fourth power the creation and annihilation operators of a q-harmonic oscillator. The choice of the “correcting” function is justified by the standard form of commutation relations for the operators of the metaplectic realization Uq(SU(1,1)). Further possible directions of research are briefly discussed to summarize the results obtained. The first direction is quite obvious. It is the consideration of the problem when the dimension of the operator space increases or for any value N. The second direction can be associated with the analysis of the relationship between q-generalizations of the Higgs and Hahn algebras.

About the Authors

A. N. Lavrenov
Belarusian State Pedagogical University
Belarus

Alexandre N. Lavrenov – Ph. D. (Physics and Mathematics), Associate Professor, Associate Professor of the Department of the Chair of Information Technologies in Education

18, Sovetskaya Str., 220050



I. A. Lavrenov
Octonion technology Ltd.
Belarus

Ivan A. Lavrenov – Leading Specialist

25, Ya. Kupala Str., 220030, Minsk



References

1. Higgs P.W. Dynamical symmetries in a spherical geometry. I. Journal of Physics A, 1979, vol. 12, no. 4, pp. 309–323. https://doi.org/10.1088/0305-4470/12/3/006

2. Kurochkin Yu. A., Otchik V. S. Analog of the Runge – Lenz vector and energy spectrum in the Kepler problem on a three-dimensional sphere. Doklady academii nauk BSSR [Doklady of the Academy of Sciences of BSSR], 1979, vol. 23, no. 11, pp. 987–990 (in Russian).

3. Bogush A. A., Kurochkin Yu. A., Otchik V. S. The quantum-mechanical Kepler problem in three-dimensional Lobačevskiĭ space. Doklady academii nauk BSSR [Doklady of the Academy of Sciences of BSSR], 1980, vol. 24, no. 1, pp. 19–22 (in Russian).

4. Chung W. S. Holstein-Primakoff realization of Higgs algebra and its q-extension. Modern Physics Letters A, 2014, vol. 29, no. 10, pp. 1450050–1450062. https://doi.org/10.1142/S0217732314500503

5. Frappat L., Gaboriaud J., Vinet L., Vinet S., Zhedanov A. S. The Higgs and Hahn algebras from a Howe duality perspective. Physics Letters A, 2019, vol. 383, no. 14, pp. 1531–1535. https://doi.org/10.1016/j.physleta.2019.02.024

6. Frappat L., Gaboriaud J., Ragoucy E., Vinet L., Vinet S., Zhedanov A. S. The q-Higgs and Askey – Wilson algebras. Nuclear Physics B, 2019, vol. 944, pp. 114632–114645. https://doi.org/10.1016/j.nuclphysb.2019.114632

7. Arik M., Atakishiyev N. M., Wolf K. B. Quantum algebraic structures compatible with the harmonic oscillator Newton equation. Journal of Physics A, 1999, vol. 32, no. 33, pp. L371–L376. https://doi.org/10.1088/0305-4470/32/33/101

8. Daskaloyannis C. Generalized deformed oscillator and nonlinear algebras. Journal of Physics A, 1991, vol. 24, no. 15, pp. L789–L794. https://doi.org/10.1088/0305-4470/24/15/001

9. Zhedanov A. S. The “Higgs algebra” as a ‘quantum’ deformation of SU(2). Modern Physics Letters A, 1992, vol. 07, no. 06, pp. 507–512. https://doi.org/10.1142/S021773239200046X

10. Delbecq C., Quesne C. Nonlinear deformations of SU(2) and SU(1,1) generalizing Witten’s algebra. Journal of Physics A, 1993, vol. 26, no. 4, pp. L127–L134. https://doi.org/10.1088/0305-4470/26/4/001

11. Feranchuk I. D., Komarov L. I. The operator method of the approximate solution of the Schrödinger equation. Physics Letters A, 1982, vol. 88, no. 5, pp. 211–214. https://doi.org/10.1016/0375-9601(82)90229-8

12. Gerry C. C., Silverman S. Approximate energy eigenvalues from a generalized operator method. Physics Letters A, 1983, vol. 95, no. 9, pp. 481–483. https://doi.org/10.1016/0375-9601(83)90501-7

13. Spiridonov V., Vinet L., Zhedanov A. Periodic reduction of the factorization chain and the Hahn polynomials. Journal of Physics A, 1994, vol. 27, no. 18, pp. L669–L676. https://doi.org/10.1088/0305-4470/27/18/005

14. Veselov, A. P., Shabat, A. B. Dressing Chains and Spectral Theory of the Schrödinger Operator. Funktsional′nyi analiz i ego prilozheniya = Functional Analysis and Its Applications, 1993, vol. 27, no. 2, pp. 81–96 (in Russian). https://doi. org/10.1007/BF01085979

15. Macfarlane A. J. On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q. Journal of Physics A, 1994, vol. 22, no. 21, pp. 4581–4588. https://doi.org/10.1088/0305-4470/22/21/020

16. Biedenharn L. C. The quantum group SUq(2) and a q-analogue of the boson operators. Journal of Physics A, 1989, vol. 22, no. 18, pp. L873–L878. https://doi.org/10.1088/0305-4470/22/18/004

17. Floreanini R., Spiridonov V. P., Vinet L. q-Oscillator Realizations of the Quantum Superalgebras SLq(m,n) and OSPq(m,2n). Communications in Mathematical Physics, 1991, vol. 137, no. 1, pp. 149–160. https://doi.org/10.1007/BF02099120


Review

Views: 542


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)