Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

The Yb3+:LuAlO3 crystal as an active medium for picosecond mode-locked lasers

https://doi.org/10.29235/1561-2430-2021-57-4-485-494

Abstract

Herein, we report on the mathematical modelling and experimental study of the regime of nonsoliton mode locking in a laser based on the Yb3+:LuAlO3 (Yb:LuAP) crystal with longitudinal pumping by laser diode radiation. Simulation based on the Haus master equation permitted to determine the requirements for the parameters of a saturable absorber (SA), the level of the average output power, the size of the TEM00 mode of the cavity in the active element and on the gate to obtain a stable regime of generation of picosecond laser pulses. Laser experiments were carried out in a fourmirror X-shaped resonator using a semiconductor saturable mirror (SESAM) as a passive modulator and a laser diode with a fiber output of a maximum power up to 30 W at a wavelength of 978.5 nm as a pump source. We obtained a stable passive mode locking with a maximum average output power of up to 12 W and an ultrashort pulse duration of about 2 ps at an optical conversion efficiency of pump radiation into lasing radiation of about 38 %. Laser pulses were obtained at a central wavelength of about 999 nm with a minimum Stokes shift (about 2 %) with respect to the pump radiation, which significantly reduced the thermal load on the active element. Additionally, the preliminary results on the second harmonic generation and synchronous pumping of a parametric light generator using a Yb3+ : LuAlO3 crystal laser as a pump source are presented.

About the Authors

V. E. Kisel
Belarussian National Technical University
Belarus

Viktor E. Kisel – Ph. D. (Physics and Mathematics), Head of Research Center of Optical Materials and Technologies

65, Nezavisimosti Ave., 220013, Minsk



N. V. Kuleshov
Belarussian National Technical University
Belarus

Nikolay V. Kuleshov – Dr. Sc. (Physics and Mathematics), Head of Laser Devices and Technology Department

65, Nezavisimosti Ave., 220013, Minsk



A. S. Yasukevich
Belarussian National Technical University
Belarus

Anatoly S. Yasukevich – Ph. D. (Physics and Mathematics), Leading Researcher at the Research Center of Optical Materials and Technologies

65, Nezavisimosti Ave., 220013,  Minsk



References

1. Zapata L. E., Reichert F., Hemmer M., Kärtner F. X. 250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping. Optics Letters, 2016, vol. 41, no. 3, pp. 492–495. https://doi.org/10.1364/ol.41.000492

2. Wang Y., Chi H., Baumgarten C., Dehne K., Meadows A. R., Davenport A., Murray G., Reagan B. A., Menoni C. S., Rocca J. J. 1.1 J Yb:YAG picosecond laser at 1 kHz repetition rate. Optics Letters, 2020, vol. 45, no. 24, pp. 6615–6618. https:// doi.org/10.1364/ol.413129

3. Kovalyov A. A., Preobrazhenskii V. V., Putyato M. A., Pchelyakov O. P., Rubtsova N. N., Semyagin B. R., Kisel V. E., Kurilchik S. V., Kuleshov N. V. 115 fs pulses from Yb3+:KY(WO4)2 laser with low loss nanostructured saturable absorber. Laser Physics Letters, 2011, vol. 8, no. 6, pp. 431. https://doi.org/10.1002/lapl.201110019

4. Pekarek S., Fiebig C., Stumpf M. C., Oehler A. E. H., Paschke K., Erbert G., Südmeyer T., Keller U. Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9 kW. Optics Express, 2010, vol. 18, no. 16, pp. 16320–16326. https://doi.org/10.1364/OE.18.016320

5. Lagatsky A. A., Sarmani A. R., Brown C. T. A., Sibbett W., Kisel V. E., Selivanov A. G., Denisov I. A., Troshin A. E., Yumashev K. V., Kuleshov N. V., Matrosov V. N., Matrosova T. A., Kupchenko M. I. Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers. Optics Letters, 2005, vol. 30, no. 23, pp. 3234–3236. https://doi.org/10.1364/ ol.30.003234

6. Zhao H., Major A. Powerful 67 fs Kerr-lens mode-locked prismless Yb:KGW oscillator. Optics Express, 2013, vol. 21, no. 26, pp. 31846–31851. https://doi.org/10.1364/oe.21.031846

7. Spühler G. J., Südmeyer T., Paschotta R., Moser M., Weingarten K. J., Keller U. Passively mode-locked high-power Nd:YAG lasers with multiple laser heads. Applied Physics B, 2000, vol. 71, no. 1, pp. 19–25. https://doi.org/10.1007/pl00021154

8. Ruffing B., Nebel A., Wallenstein R. All-solid-state cw mode-locked picosecond KTiOAsO4 (KTA) optical parametric oscillator. Applied Physics B, 1998, vol. 67, no. 5, pp. 537–544. https://doi.org/10.1007/s003400050541

9. McDonagh L., Wallenstein R., Nebel A. 111 W, 110 MHz repetition-rate, passively mode-locked TEM00 Nd:YVO4 master oscillator power amplifier pumped at 888 nm. Optics Letters, 2007, vol. 32, no. 10, pp. 1259–1261. https://doi. org/10.1364/ol.32.001259

10. Aleksandrov V., Grigorova T., Iliev H., Trifonov A., Buchvarov I. χ(2)-Lens Mode-Locking of a High Average Power Nd:YVO4 Laser. CLEO: 2014, OSA Technical Digest (online). Optical Society of America, 2014. Paper SM4F.3. https://doi. org/10.1364/cleo_si.2014.sm4f.3

11. Rudenkov A., Kisel V., Yasukevich A., Hovhannesyan K., Petrosyan A., Kuleshov N. Spectroscopy and continuous wave laser performance of Yb3+:LuAlO3 crystal. Optics Letters, 2016, vol. 41, no. 24, pp. 5805–5808. https://doi.org/10.1364/ ol.41.005805

12. Boulon G. Characterization and comparison of Yb3+-doped YAlO3 perovskite crystals (Yb:YAP) with Yb3+-doped Y3Al5O12 garnet crystals (Yb:YAG) for laser application. Journal of the Optical Society of America B, 2008, vol. 25, no. 5, pp. 884–896. https://doi.org/10.1364/josab.25.000884

13. Yasyukevich A. S., Shcherbitskii V. G., Kisel V. E., Mandrik A. V., Kuleshov N. V. Integral Method of Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers. Journal of Applied Spectroscopy, 2008, vol. 71, no. 2, pp. 202–208. https://doi.org/10.1023/b:japs.0000032875.04400.a0

14. Agrawal G. P. Nonlinear Fiber Optics, 4 th. ed. Elsevier, 2007. 529 p.

15. Magni V., Cerullo G., De Silvestri S. ABCD matrix analysis of propagation of gaussian beams through Kerr media. Optics Communications, 1993, vol. 96, no. 4–6, pp. 348–355. https://doi.org/10.1016/0030-4018(93)90284-c


Review

Views: 636


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)