Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

ANALYTICAL PROPERTIES OF THE SOLUTIONS OF A FOURTH-ORDER NONLINEAR ORDINARY DIFFERENTIAL EQUATION

Abstract

Introduction of the present article indicates the object of investigation: the fourth-order differential equation. The purpose of the research is to study the analytic properties of solutions of the equation considered. In the main part of the article the solution is constructed in the form of the Laurent series. The solutions in the form of Dirichlet series and exponential series with respect to fractional-linear functions have been formulated. The issues of the series convergence, which represent the solution of this fourth-order differential equation, have been explored. The existence of three-parameter solutions with a movable singular line has been established. The obtained results can be used in the analytical theory of ordinary differential equations.

About the Authors

I. P. Martynov
Yanka Kupala State University of Grodno
Belarus


A. S. Lysiuk
Yanka Kupala State University of Grodno
Belarus


References

1. Кондратеня С. Г. // Дифференц. уравнения. 1980. Т. 16, № 11. С. 2095–2098.

2. Shazy J. // Acta Math. 1911. Vol. 4. P. 317–385.

3. Мартынов И. П. // Дифференц. уравнения. 1981. Т. 17, № 2. С. 227–232.

4. Мартынов И .П., Яблонский А .И. // Дифференц. уравнения. 1979. Т. 15, № 10. С. 1774–1782.

5. Мартынов И. П., Лысюк Е .С. // Веснік ГрДУ. Сер. 2, Матэматыка. Фiзiка. Iнфарматыка, вылiчальная тэхнiка i кiраванне. 2012. № 3 (136). С. 38–44.

6. Ванькова Т. Н., Мартынов И. П. //Дифференц. уравнения. 2009. Т. 45, № 8. С. 1085–1094.

7. Мартынов И. П., Лысюк Е. С. // Веснiк ГрДУ. Сер. 2, Матэматыка. Фiзiка. Iнфарматыка, вылiчальная тэхнiка i кiраванне. 2013. № 2 (151). С. 44–50.

8. Андреева Т. К., Лысюк Е. С., Мартынов И. П., Пронько В. А. // Веснiк ГрДУ. Сер. 2, Матэматыка. Фiзiка. Iнфарматыка, вылiчальная тэхнiка i кiраванне. 2014. № 1 (170). С. 34–41.

9. Лысюк Е. С. // Проблемы физики, математики и техники. 2014. № 4 (22). С. 70–77.

10. Horn J. // Mathematik. 1896. Bd. 116, Heft 4.

11. Мартынов И. П. // Дифференц. уравнения. 1973. Т. 9, № 10. С. 1780–1791.

12. Леонтьев А. Ф. Ряды экспонент. М., 1976.


Review

Views: 703


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)