On the features of nonlinear analysis of dynamical systems based on the matrix decomposition method
https://doi.org/10.29235/1561-2430-2022-58-2-190-207
Abstract
In this paper, we consider the application of the matrix decomposition method to analyze Chua’s chaotic oscillator. It is shown that Chua’s system of equations describing the oscillator can be expanded into linear, quadratic, and cubic terms using the matrix decomposition method. Decomposition into a matrix series permits to study transition to chaos in Chua’s system from the point of view of Landau’s model of initial turbulence. The emerging new chaotic state in the system when a new stationary value of a state-space variable is chosen is explained using the Poincaré section method. For the system of equations that are obtained using the matrix decomposition method, the spectral and bifurcation analysis is conducted. Simulations using MATLAB and Simulink are carried out. A computational Simulink-model is the basis for building an information technology for recognizing the chaotic dynamics of Chua-type oscillators.
Keywords
About the Authors
A. M. KrotBelarus
Alexander M. Krot – Dr. Sc. (Engineering), Professor, Chief of the Laboratory of Self-Organization System Modeling
6, Surganov Str., 220012, Minsk
U. A. Sychou
Belarus
Uladzislau A. Sychou – Researcher at the Laboratory of Robotic Systems
6, Surganov Str., 220012, Minsk
References
1. Krot A. M. The decomposition of vector functions in vector-matrix series into state-space of nonlinear dynamic system. EUSIPCO-2000: Proceedings X European Signal Processing Conference, Tampere, Finland, September 4–8, 2000. Vol. 3. Tampere, 2000, pp. 2453–2456.
2. Krot A. M. Analysis of attractors of complex nonlinear dynamical systems on the basis of matrix series in the statespace. Informatica = Informatics, 2004, no. 1, pp. 7–16 (in Russian).
3. Krot A. M. The development of matrix decomposition theory for nonlinear analysis of chaotic attractors of complex systems and signals. DSP-2009: Proceedings 16th IEEE International Conference on Digital Signal Processing, Thira, Santorini, Greece, July 5–7, 2009. Santorini, 2009, pp. 1–5. https://doi.org/10.1109/icdsp.2009.5201123
4. Krot A. M., Sychou U. A. The analysis of chaotic regimes in Chua’s circuit with smooth nonlinearity based on the matrix decomposition method. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya fizika-technichnych navuk = Proceedings of the National Academy of Sciences of Belarus. Physical-technical series, 2018, vol. 63, no. 4, pp. 501–512 (in Russian). https://doi.org/10.29235/1561-8358-2018-63-4-501-512
5. Krot A. M. An evolutionary model of chaotic wave processes in complex dynamical systems based on the matrix decomposition theory. Dopovіdі Natsіonal'noї akademії nauk Ukraїni = Reports of the National Academy of Sciences of Ukraine, 2019, no. 9, pp. 12–19 (in Russian). https://doi.org/10.15407/dopovidi2019.09.012
6. Wu S. Chua's circuit family. Proceedings of the IEEE, 1987, vol. 75, no. 8, pp. 1022–1032. https://doi.org/10.1109/proc.1987.13847
7. Zhong G.-Q. Implementation of Chua's circuit with a cubic nonlinearity. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1994, vol. 41, no. 12, pp. 934–941. https://doi.org/10.1109/81.340866
8. Matsumoto T. A chaotic attractor from Chua's circuit. IEEE Transactions on Circuits and Systems, 1984, vol. 31, no. 12, pp. 1055–1058. https://doi.org/10.1109/tcs.1984.1085459
9. Huang A., Pivka L., Wu C. H., Franz M. Chua’s equation with cubic nonlinearity. International Journal of Bifurcation and Chaos, 1996, vol. 06, no. 12a, pp. 2175–2222. https://doi.org/10.1142/s0218127496001454
10. Choose a Solver. Mathworks help center, 2021, Avaliable at: https://www.mathworks.com/help/simulink/ug/choosea-solver.html (accessed 25 August 2021).
11. Landau L. D. To the problem of turbulence. Doklady Akademii nauk SSSR = Proceedings of the USSR Academy of Sciences, 1944, vol. 44, no. 8, pp. 339–342 (in Russian).
12. Landau L. D., Lifschitz E. M. Fluid Mechanics. Oxford, Pergamon, 1959. XIII, 539 p.
13. Ruelle D., Takens F. On the nature of turbulence. Communications in Mathematical Physics, 1971, vol. 21, no. 3, рp. 167–192. https://doi.org/10.1007/bf01646553
14. Newhouse S., Ruelle D., Takens F. Occurrence of strange axiom A attractors near quasi periodic flows on Tm, m ≥ 3. Communications in Mathematical Physics, 1978, vol. 64, no. 1, рр. 35–40. https://doi.org/10.1007/bf01940759
15. Bergé P., Pomeau Y., Vidal C. L’ordre dans le chaos: Vers une approche déterministe de la turbulence. Paris, Hermann, 1988.
16. Matsumoto T. Chaos in electronic circuits. Proceedings of the IEEE, 1987, vol. 75, no. 8, pp. 1033–1057. https://doi.org/10.1109/proc.1987.13848
17. Feigenbaum M. J. Quantitative universality for a class of nonlinear transformations. Journal of Statistical Physics, 1978, vol. 19, no. 1, pp. 25–52. https://doi.org/10.1007/bf01020332
18. Feigenbaum M. J. The universal metric properties of nonlinear transformations. Journal of Statistical Physics, 1979, vol. 21, no. 6, pp. 669–706. https://doi.org/10.1007/bf01107909
19. Feigenbaum M. J. Universal behavior in nonlinear systems. Los Alamos Science. 1980, vol. 1, no.1, pp. 4–27.
20. Hasler M. J. Electrical circuits with chaotic behavior. Proceedings of the IEEE, 1987, vol. 75, no. 8, pp. 1009–1021. https://doi.org/10.1109/proc.1987.13846
21. Schöll E., Schuster H. G. (eds.). Handbook of Chaos Control. Weinheim, Wiley VCH Verlag GmbH, 2007. 819 p. https://doi.org/10.1002/9783527622313
22. Ginzburg V. L. Physics and Astrophysics: A Selection of Key Problems. Pergamon, 1985. 140 p.
23. Ginzburg V. L. What problems of physics and astrophysics seem now to be especially important and interesting (thirty years later, already on the verge of XXI century)? Physics-Uspekhi, 1999, vol. 42, no. 4, pp. 353–373. http://doi.org/10.1070/PU1999v042n04ABEH000562