Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Gain saturation effects in THz quantum cascade lasers

https://doi.org/10.29235/1561-2430-2022-58-2-237-244

Abstract

The effect of gain saturation in quantum-cascade structures with 2–4 quantum wells per period is herein analyzed on the basis of a system of balance equations. It is shown that the nonlinearity parameter decreases with an increase in the relaxation rate of laser levels, but the total current through the structure also increases. The use of the proposed multiphoton designs leads to a decrease in the non-linearity parameter without increasing the operating current. For example, in a two-photon scheme of laser transitions with the same transition probabilities and differential gains, two times slower saturation of the gain with an increase in the photon density is achieved, which leads to a high generation efficiency than in single-photon schemes.

About the Authors

D. V. Ushakov
Belarusian State University
Belarus

Dmitrii V. Ushakov – Ph. D. (Physics and Mathematics), Associate Professor, Dean of the Faculty of Radiophysics and Computer Technologies

4, Nezavisimosti Ave., 220030, Minsk

 



A. A. Afonenko
Belarusian State University
Belarus

Alexander A. Afonenko – Dr. Sc. (Physics and Mathematics), Associate Professor, Head of the Department of Quantum Radiophysics and Optoelectronics

4, Nezavisimosti Ave., 220030, Minsk



R. A. Khabibullin
V. G. Mokerov Institute of Ultra-high Frequency Semiconductor Electronics of Russian Academy of Sciences
Russian Federation

Rustam A. Khabibullin – Ph. D. (Physics and Mathematics), Senior Researcher

7, building 5, Nagorny proezd, 117105, Moscow



V. K. Kononenko
Belarusian State University
Belarus

Valerii K. Kononenko – Dr. Sc. (Physics and Mathematics), Professor, Professor of the Department of Quantum Radiophysics and Optoelectronics

4, Nezavisimosti Ave., 220030, Minsk 



I. S. Manak
Belarusian State University
Belarus

Ivan S. Manak – Ph. D. (Physics and Mathematics), Associate Professor, Associate Professor of the Department of Quantum Radiophysics and Optoelectronics

4, Nezavisimosti Ave., 220030, Minsk



References

1. Ananiev Yu. A., Gribkovsky V. P., Mak A. A., Stepanov B. I. Optical properties of a four-level quantum generator. Doklady Akademii nauk SSSR = Proceedings of the USSR Academy of Sciences, 1963, vol. 150, no. 3, pp. 507–510 (in Russian).

2. Methods for Calculating Optical Quantum Generators. Ed. B. I. Stepanov. Minsk, Nauka i tekhnika Publ., 1968, vol. 1. 483 p. (in Russian).

3. Schulz-Dubois E. O. Pulse Sharpening and Gain Saturation in Traveling-Wave Masers. Bell System Technical Journal, 1964, vol. 43, no. 2, pp. 625–658. https://doi.org/10.1002/j.1538-7305.1964.tb00999.x

4. Rigrod W. W. Saturation Effects in High Gain Lasers. Journal of Applied Physics, 1965, vol. 36, no. 8, pp. 2487–2490. https://doi.org/10.1063/1.1714517

5. Kononenko V. K., Gribkovskii V. P. Effect of saturation in semiconductor light amplifiers and filters. Optika i spektroskopiya = Optics and Spectroscopy, 1970, vol. 29, no. 5. pp. 975–984 (in Russian).

6. Gribkovskii V. P. Theory of Absorption and Emission of Light in Semiconductors. Minsk, Nauka i tekhnika Publ., 1975. 464 p. (in Russian).

7. Gribkovsky V. P. Semiconductor Lasers. Minsk, Universitetskoe Publ., 1988. 304 p. (in Russian).

8. Kononenko V. K. Absorption saturation in the region of the tails of the state density. Journal of Applied Spectroscopy, 1984, vol. 41, no. 1, pp. 820–823. https://doi.org/10.1007/BF00657701

9. Gaponenko S. V., Zimin L. G., Nikeenko N. K. Saturation of absorption in zinc selenide. Journal of Applied Spectroscopy, 1984, vol. 40, no. 2, pp. 198–201. https://doi.org/10.1007/BF00660261

10. Göbel E. O., Höger R., Kuhl J., Polland H. J., Ploog K. Homogeneous gain saturation in GaAs/AlGaAs quantum well lasers. Journal of Applied Physics, 1985, vol. 47, no. 8, pp. 781–783. https://doi.org/10.1063/1.96036

11. Kononenko V. K. Nonlinear Absorption in Quantum-Size Heterostructures. Physica Status Solidi B, 1988, vol. 150, no. 2, pp. 695–698. https://doi.org/10.1002/pssb.2221500256

12. Kononenko V. K., Manak I. S., Furunzhiev É. R. Gain saturation in quantum-well heterostructures. Journal of Applied Spectroscopy, 1997, vol. 64, no. 6, pp. 813–817. https://doi.org/10.1007/BF02678866

13. Hasnain G., Chang-Hasnain C. J., Döhler G. H., Miller J. N., Johnson N. M., Whinnery J. R., Dienes A. Tunable absorption and electroluminescence in GaAs doping superlattices. Superlattices & Microstructures, 1987, vol. 3, no. 3, pp. 277– 282. https://doi.org/10.1016/0749-6036(87)90072-3

14. Renn M., Metzner C., Döhler G. H. Effect of random impurity distribution on the luminescence of n-i-p-i doping superlattices. Physical Review B, 1993, vol. 48, no. 15, pp. 11220–11227. https://doi.org/10.1103/PhysRevB.48.11220

15. Metzner C., Schrüfer K., Wieser U. [et al.]. Disorder effects on luminescence in δ-doped n-i-p-i superlattices. Physical Review B, 1995, vol. 51, no. 8, pp. 5106–5115. https://doi.org/10.1103/PhysRevB.51.5106

16. Ushakov D. V., Kononenko V. K., Manak I. S. Nonlinear optical properties in semiconductor doping superlattices. Journal of Applied Spectroscopy, 2001, vol. 68, no. 4, pp. 656–662. https://doi.org/10.1023/A:1012586425501

17. Ushakov D. V., Kononenko V. K., Manak I. S. Saturation of absorption in n-i-p-i crystals. SPIE Proceedings, 2001, vol. 4358, pp. 171–174. https://doi.org/10.1117/12.418850

18. Kononenko V. K., Smirnov A. G., Ushakov D. V. Influence of gain saturation on output power characteristics of the photonic crystal type heterostructures. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya = Bulletin of the Russian Academy of Sciences: Physics, 2004, vol. 68, no. 1, pp. 127–130 (in Russian).

19. Kononenko V. K., Smirnov A. G., Ushakov D. V., Nefedov I. S. Photon Heterostructures on Semiconductor Doping Superlattices. Vestnik fonda fundamental’nykh issledovanii = Bulletin of the Foundation of Fundamental Research, 2005, vol. 34, no. 4, pp. 54–75 (in Russian).

20. Ushakov D. V., Kononenko V. K., Marciniak M. Nonlinearities in the reflection and transmission spectra of the photonic bandgap heterostructures with n-i-p-i crystals. Optical and Quantum Electronics, 2007, vol. 39, no. 4–6, pp. 431– 439. https://doi.org/10.1007/s11082-007-9083-7

21. Chanin D. J. Effect of gain saturation on injection laser switching. Journal of Applied Physics, 1979, vol. 50, no. 6, pp. 3858–3860. https://doi.org/10.1063/1.326510

22. Schatz R. Dynamics of Spatial Hole Burning Effects in DFB Lasers. IEEE Journal of Quantum Electronics, 1995, vol. 31, no. 11, pp. 1981–1993. https://doi.org/10.1109/3.469279

23. Huang J., Casperson L.W. Gain and saturation in semiconductor lasers. Optical and Quantum Electronics, 1993, vol. 25, no. 6, pp. 369–390. https://doi.org/10.1007/BF00420579

24. Agrawal G. P. Gain nonlinearities in semiconductor lasers: Theory and application to distributed feedback lasers. IEEE Journal of Quantum Electronics, 1987, vol. 23, no. 6, pp. 860–868. https://doi.org/10.1109/jqe.1987.1073406

25. Agrawal G. P. Spectral hole burning and gain saturation in semiconductor lasers: Strong signal theory. Journal of Applied Physics, 1988, vol. 63, no. 4, pp. 1232–1235. https://doi.org/10.1063/1.339990

26. Unterrainer K., Colombelli R., Gmachl C., Capasso F., Hwang H., Sergent A., Sivco D., and Cho A. Quantum cascade lasers with double metal-semiconductor waveguide resonators. Applied Physics Letters, 2002, vol. 80, no. 17, pp. 3060–3062. https://doi.org/10.1063/1.1469657

27. Fathololoumi S., Dupont E., Chan C. W. I., Wasilewski Z. R., Laframboise S. R., Ban D., Mátyás A., Jirauschek C., Hu Q., and Liu H. C. Terahertz quantum cascade lasers operating up to 200 K with optimized oscillator strength and improved injection tunneling. Optics Express, 2012, vol. 20, no. 4, pp. 3866–3876. https://doi.org/10.1364/OE.20.003866

28. Kumar S., Hu Q., Reno J. L. 186 K operation of terahertz quantum-cascade lasers based on a diagonal design. Applied Physics Letters, 2009, vol. 94, no. 13, pp. 131105. https://doi.org/10.1063/1.3114418

29. Bosco L., Franckié M., Scalari G., Beck M., Wacker A., Faist J. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Applied Physics Letters, 2019, vol. 115, no. 1, pp. 010601. https://doi.org/10.1063/1.5110305

30. Ushakov D. V., Manak I. S. Two-period model for calculation of level populations in subbands of multi-period quantum-cascade superlattice structures. Journal of Applied Spectroscopy, 2007, vol. 74, no. 6, pp. 892–896. https://doi.org/10.1007/s10812-007-0138-0

31. Ushakov D. V., Afonenko A. A., Dubinov A. A., Gavrilenko V. I., Volkov O. Yu., Shchavruk N. V., Ponomarev D. S., Khabibullin R. A. Balance-equation method for simulating terahertz quantum-cascade lasers using a wave-function basis with reduced dipole moments of tunnel-coupled states. Quantum Electronics, 2019, vol. 49, no. 10, pp. 913–918. https://doi.org/10.1070/QEL17068

32. Ushakov D., Afonenko A., Khabibullin R., Ponomarev D., Aleshkin V., Morozov S., Dubinov A. HgCdTe-based quantum cascade lasers operating in the GaAs phonon Reststrahlen band predicted by the balance equation method. Optics Express, 2020, vol. 28, no. 17, pp. 25371–25382. https://doi.org/10.1364/OE.398552


Review

Views: 650


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)