1. Dielectric function of Cu(In,Ga)Se2-based polycrystalline materials / S. Minoura [et. al.] // J. Appl. Phys. - 2013. - Vol. 113, № 6. - P. 063505-1-063505-14. https://doi.org/10.1063/1.4790174
2. Optical properties and band gap energy of CuInSe2 thin films prepared by two-stage selenisation process / M. V. Yakushev [et. al.] // J. Phys. Chem. Solids. - 2003. - Vol. 64, № 9-10. - P. 2005-2009. https://doi.org/10.1016/S00223697(03)00089-1
3. Band gap energies of bulk, thin-film, and epitaxial layers of CuInSe2 and CuGaSe2 / S. Chichibu [et. al.] // J. Appl. Phys. - 1998. - Vol. 83, № 7. - P. 3678-3689. https://doi.org/10.1063/1.366588
4. Aida, Y. Cu-rich CuInSe2 solar cells with a Cu-poor surface / Y. Aida, V. Depredurand, J. K. Larsen // Prog. Photovolt. Res. Appl. - 2015. - Vol. 23, № 6. - P. 754-764. https://doi.org/10.1002/pip.2493
5. Efficiency improvement of near-stoichiometric CuInSe2 solar cells for application in tandem devices / T. Feurer [et. al.] // Adv. Energy Mater. - 2019. - Vol. 9, № 35. - P. 1901428-1-1901428-6. https://doi.org/10.1002/aenm.201901428
6. Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6 % / P. Jackson [et. al.] // Phys. Stat. Sol. PRL. - 2016. - Vol. 10, № 8. - P. 583-586. https://doi.org/10.1002/pssr.201600199
7. High excitation photoluminescence effects as a probing tool for the growth of Cu(In,Ga)Se2 / M. Moret [et. al.] // Proc. SPIE. - 2015. - Vol. 9358. - P. 9358-A1-9358-A7. https://doi.org/10.1117/12.2076938
8. Stimulated emission and lasing in Cu(In,Ga)Se2 thin films / I. E. Svitsiankou [et. al.] // J. Phys. D: Appl. Phys. - 2016. - Vol. 49, № 9. - P. 095106-1-095106-5. https://doi.org/10.1088/0022-3727/49/9/095106
9. Potassium fluoride postdeposition treatment with etching step on both Cu-rich and Cu-poor CuInSe2 thin film solar cells / F. Babbe [et. al.] // Phys. Rev. Mater. - 2018. - Vol. 2, № 10. - P. 105405-1-105405-9. https://doi.org/10.1103/physrevmaterials.2.105405
10. Tomlinson, R. D. Fabrication of CuInSe2 single crystals using melt-growth techniques / R. D. Tomlinson // Solar Cells. - 1986. - Vol. 16. - P. 17-26. https://doi.org/10.1088/0379-6787(86)90072-4
11. Thermal expansion of CuInSe2 in the 11-1,073 K range: An X-ray diffraction study / W. Paszkowicz // Appl. Phys. A. - 2014. - Vol. 116, № 2. - P. 767-780. https://doi.org/10.1007/s00339-013-8146-9
12. Optical properties of high-quality CuInSe2 single crystals / A. V. Mudryi [et. al.] // Appl. Phys. Lett. - 2000. - Vol. 77, № 16. - P. 2542-2544. https://doi.org/10.1063/1.1308525
13. Magneto-photoluminescence study of radiative recombination in CuInSe2 single crystals / M. V. Yakushev [et. al.] // J. Phys. Chem. Solids. - 2003. - Vol. 64, № 9-10. - P. 2011-2016. https://doi.org/10.1016/S0022-3697(03)00090-8
14. Excitation power and temperature dependence of excitons in CuInSe2 / F. Luckert [et. al.] // J. Appl. Phys. - 2012. - Vol. 111, № 9. - P. 093507-1-093507-8. https://doi.org/10.1063/1.4709448
15. Excited states of the excitons in CuInSe2 single crystals / M. V. Yakushev [et. al.] // Appl. Phys. Lett. - 2010. - Vol. 97, № 15. - P. 152110-1-152110-3. https://doi.org/10.1063/1.3502603
16. The hunt for the third acceptor in CuInSe2 and Cu(In,Ga)Se2 absorber layers / F. Babbe et. al. // J. Phys. Condens. Matter. - 2019. - Vol. 31, № 42. - P. 425702-1-425702-9. https://doi.org/https://doi.org./10.1088/1361-648X/ab2e24
17. Photoluminescence, stimulated and laser emission in CuInSe2 crystals / I. E. Svitsiankou [et. al.] // Appl. Phys. Lett. - 2021. - Vol. 119, № 21. - P. 212103-1-212103-5. https://doi.org/10.1063/5.0060076
18. Kawashima, T. Optical constants of CuGaSe2 and CuInSe2 / T. Kawashima, S. Adachi. // J. Appl. Phys. - 1998. - Vol. 84, № 9. - P. 5202-5209. https://doi.org/10.1063/1.368772