Semiclassical approximation of functional integrals containing the centrifugal potential
https://doi.org/10.29235/1561-2430-2022-58-4-389-397
Abstract
In this paper, we consider the class of functional integrals with respect to the conditional Wiener measure, which is important for applications. These integrals are written using the action functional containing terms corresponding to kinetic and potential energies. For the considered class of integrals an approach to semiclassical approximation is developed. This approach is based on the decomposition of the action with respect to the classical trajectory. In the expansion of the action, only terms with degrees zero and two are used. A numerical analysis of the accuracy of the semiclassical approximation for functional integrals containing the centrifugal potential is done.
About the Authors
V. B. MalyutinBelarus
Victor B. Malyutin – Dr. Sc. (Physics and Mathematics), Chief Researcher, Institute of Mathematics of the National Academy of Sciences of Belarus.
11, Surganov Str., 220072, Minsk
B. O. Nurjanov
Uzbekistan
Berdakh O. Nurjanov – Ph. D. (Physics and Mathematics), Senior Researcher, Institute of Mathematics named after V.I. Romanovsky of the Academy of Sciences of the Republic of Uzbekistan; Karakalpak State University named after Berdakh
9, University Str., 100174, Tashkent; 1, Ch. Abdirov Str., 230112, Nukus
References
1. Feynman R. P., Hibbs A. R. Quantum Mechanics and Path Integrals. New York, McGraw-Hill, 1965. 365 p.
2. Glimm J., Jaffe A. Quantum Physics. A Functional Integral Point of View. New York, Springer-Verlag, 1981. 417 p. https://doi.org/10.1007/978-1-4684-0121-9
3. Simon B. Functional Integration and Quantum Physics. New York, Academic Press, 1979. 295 p. https://doi. org/10.1016/s0079-8169(08)x6061-1
4. Roepstorff G. Path Integral Approach to Quantum Physics: An Introduction. Berlin, Heidelberg, Springer-Verlag, 1994. 387 p. https://doi.org/10.1007/978-3-642-57886-1
5. Bogolyubov N. N., Shirkov D. V. Introduction to the Theory of Quantized Fields. Moscow, Nauka Publ., 1984. 600 p. (in Russian).
6. Vasiliev А. N. Functional Methods in Quantum Field Theory and Statistics. Leningrad, Leningrad University Press, 1976. 295 p. (in Russian).
7. Popov V. N. Path Integrals in Quantum Field Theory and Statistical Physics. Moscow, Atomizdat Publ., 1976. 256 p. (in Russian).
8. Kleinert H. Path Integrals in Quantum Mechanics, Statistics Polymer Physics, and Financial Markets. Singapore, World Scientific Publishing, 2004. 1504 p. https://doi.org/10.1142/9789812562197_fmatter
9. Langouche F., Roekaerts D., Tirapegui E. Functional Integration and Semiclassical Expansions. Dordrecht, Springer, 1982. 315 p. https://doi.org/10.1007/978-94-017-1634-5
10. Wio H. S. Path Integration to Stochastic Process: An Introduction. World Scientific Publishing Company, 2013. https://doi.org/10.1142/8695
11. Risken H. The Fokker-Planck Equation: Methods of Solution and Applications. Berlin, Heidelberg, Springer-Verlag, 1984. 454 p. https://doi.org/10.1007/978-3-642-96807-5
12. Аyryan E. А., Еgorov А. D., Кulyabov D. S., Мalyutin V. B., Sevastianov L. А. Application of functional integrals to stochastic equations. Matematicheskoe modelirovanie = Mathematical Models and Computer Simulations, 2016, vol. 28, no. 11, pp. 113–125 (in Russian).
13. Маzmanishvili А. S. Continual Integration as a Method for Solving Physical Problems. Kyiv, Naukova dumka Publ., 1987. 224 p. (in Russian).
14. Hnatic M., Honkonen J., Lucivjansky T. Field theoretic technique for irreversible reaction processes. Physics of Particles and Nuclei, 2013, vol. 44, no. 2, pp. 316–348. https://doi.org/10.1134/s1063779613020160
15. Creutz M. Quarks, Gluons and Lattices. Cambridge University Press, 1983. 169 p.
16. Creutz M., Freedman B. A statistical approach to quantum mechanics. Annals of Physics, 1981, vol. 132, no. 2, pp. 427–462. https://doi.org/10.1016/0003-4916(81)90074-9
17. Shuryak E. V., Zhirov O. V. Testing Monte Carlo methods for path integrals in some quantum mechanical. Nuclear Physics B, 1984, vol. 242, no. 2, pp. 393–406. https://doi.org/10.1016/0550-3213(84)90401-2
18. Yanovich L. A. Approximate Evaluation of Continual Integrals with respect to Gaussian Measures. Minsk, Nauka i tekhnika Publ., 1976. 382 p. (in Russian).
19. Elepov B. S., Kronberg А. А., Мikhailov G. А., Sabelfeld K. K. Solution of Boundary Value Problems by Monte-Carlo Method. Novosibirsk, Nauka Publ., 1980. 174 p. (in Russian).
20. Sabelfeld K. K. Approximate evaluation of Wiener continual integrals by Monte-Carlo method. USSR Computational Mathematics and Mathematical Physics, 1979, vol. 19, no. 1, pp. 27–43. https://doi.org/10.1016/0041-5553(79)90064-8
21. Egorov A. D., Sobolevsky P. I., Yanovich L. A. Approximate Methods of Evaluation of Continual Integrals. Minsk, Nauka i tekhnika Publ., 1985. 309 p. (in Russian).
22. Egorov A. D., Sobolevsky P. I., Yanovich L. A. Functional Integrals: Approximate Evaluation and Applications. Dordrecht, Kluwer Academic Pablishers, 1993. 400 p. https://doi.org/10.1007/978-94-011-1761-6
23. Egorov A. D., Zhidkov Е. P., Lobanov Yu. Yu. Introduction to Theory and Applications of Functional Integration. Мoscow, Fizmatlit Publ., 2006. 400 р. (in Russian).
24. Коvalchik I. М., Yanovich L. А. Generalized Wiener Integral and Some of its Applications. Minsk, Nauka i tekhnika Publ., 1989. 221 p. (in Russian).
25. Zhidkov E. P., Lobanov Yu. Yu. Method of approximate functional integration in the problems of mathematical physics. Physics of Elementary Particles and Atomic Nuclei (PEPAN), 1996, vol. 27, no. 1, pp. 173–242 (in Russian).
26. Malyutin V. B., Nurjanov B. O. Semiclassical approximation of functional integrals. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2020, vol. 56, no. 2, pp. 166–174. https://doi.org/10.29235/1561-2430-2020-56-2-166-174
27. Setare M. R., Haidari S. Solution of the Dirac equation for the Davidson potential. International Journal of Theoretical Physics, 2009, vol. 48, no. 11, pp. 3249–3256. https://doi.org/10.1007/s10773-009-0128-5
28. Bohm D. Quantum Theory. New York, Prentice-Hall, 1951. 646 p.
29. Berezin I. S., Zhidkov N. P. Calculation Methods. Vol. 2. Moscow, Fizmatlit Publ., 1959. 620 p. (in Russian).
30. Schulmann L. S. Techniques and Applications of Path Integration. New York, John Wiley & Sons, 1981.
31. Grosche C., Steiner F. Classification of solvable Feynman path integrals. Grabert H., Inomata A., Schulman L. S., Weiss U. (eds.). Proceedings of the IV International Conference on Path Integrals from meV to MeV, Tutzing, Germany 1992. Singapore, World Scientific, 1993, pp. 276–288.
32. Bennati E., Rosa-Clot M., Taddei S. A path integral approach to derivative security pricing I: formalism and analytical results. International Journal of Theoretical and Applied Finance, 1999, vol. 02, no. 04, pp. 381–407. https://doi.org/10.1142/s0219024999000200