On high order contributions to the anomalous magnetic moments of leptons due to the vacuum polarization by lepton loops
https://doi.org/10.29235/1561-2430-2022-58-4-412-423
Abstract
We analyze herein the higher orders contributions of expansions in the fine structure constant α to the anomalous magnetic moment of leptons coming from the diagrams of vacuum polarization by lepton loops in the case when the ratio of the mass of lepton in the loop to the mass of external lepton is less than unity. The dependence of the expansion coefficients an on the ratio of lepton masses is found and a comparison is made with the previously known analytical estimates. It is shown that for real values of lepton masses the new analytical expressions turn out to be more accurate than the known ones. Estimates are given for the order of expansion n*, starting from which one or another accuracy is guaranteed for the coefficients an.
Keywords
About the Authors
V. I. LashkevichBelarus
Vasil I. Lashkevich – Ph. D. (Physics and Mathematics), Associate Professor of the Higher Mathematics Department, Sukhoi State Technical University of Gomel.
48, Octiabrya Ave., 246746, Gomel
O. P. Solovtsova
Russian Federation
Olga P. Solovtsova – Dr. Sc. (Physics and Mathematics), Chief Researcher of the Scientific Research Center, Sukhoi State Technical University of Gomel; Leading Researcher of the Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research.
48, Octiabrya Ave., 246746, Gomel; 6, Joliot-Curie Str., 141980, Dubna, Moscow Region
O. V. Teryaev
Russian Federation
Oleg V. Teryaev – Dr. Sc. (Physics and Mathematics), Professor, Head of the Department of Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research.
6, Joliot-Curie Str., 141980, Dubna, Moscow Region
References
1. Lautrup B. E., Peterman A., Rafael E. Recent developments in the comparison between theory and experiments in quantum electrodynamics. Physics Reports, 1972, vol. 3, no. 3, pp. 193–259. https://doi.org/10.1016/0370-1573(72)90011-7
2. Aoyama T., Asmussen N., Benayoun M., Bijnens J., Blum T., Bruno M. [et al.]. The anomalous magnetic moment of the muon in the Standard Model. Physics Reports, 2020, vol. 887, pp. 1–166. https://doi.org/10.1016/j.physrep.2020.07.00
3. Schwinger J. S. Quantum Electrodynamics. III. The Electromagnetic Properties of the Electron – Radiative Corrections to Scattering. Physical Review, 1949, vol. 76, no. 6, pp. 790–817. https://doi.org/10.1103/physrev.76.790
4. Consa O. Something is wrong in the state of QED. Arxiv [Preprint], 2021. Available at: https://arxiv.org/abs/2110.02078. https://doi.org/10.48550/arXiv.2110.02078
5. Parker R. H., Chenghui Yu, Zhong W., Estey B., Müller H. Measurement of the fine-structure constant as a test of the Standard Model. Science, 2018, vol. 360, no. 6385, pp. 191–195. https://doi.org/10.1126/science.aap7706
6. Davoudiasl H., Marciano W. J. Tale of two anomalies. Physical Review D, 2018, vol. 98, no. 7, art. 075011. https://doi.org/10.1103/physrevd.98.075011
7. Abi B., Albahri T., Al-Kilani S., Allspach D., Alonzi L. P. Anastas A. [et al.] (Muon g – 2 Collaboration). Measurement of the positive muon anomalous Magnetic Moment to 0.46 ppm. Physical Review Letters, 2021, vol. 126, no. 14, art. 141801.
8. Lautrup B. E. On high order estimates in QED. Physics Letters B, 1977, vol. 69, no. 1, pp. 109–111. https://doi.org/10.1016/0370-2693(77)90145-9
9. Laursen M. L., Samuel M. A. Borel transform technique and the n-bubble-diagram contribution to the lepton anomaly. Physical Review D, 1981, vol. 23, no. 10, pp. 2478–2481. https://doi.org/10.1103/physrevd.23.2478
10. Kinoshita T., Nizic B., Okamoto Y. Eighth-order QED contribution to the anomalous magnetic moment of the muon. Physical Review D, 1990, vol. 41, no. 2, pp. 593–610. https://doi.org/10.1103/physrevd.41.593
11. Jegerlehner F. The Anomalous Magnetic Moment of the Muon. Springer Tracts in Modern Physic. Springer International Publishing AG, 2017. 693 p. https://doi.org/10.1007/978-3-319-63577-4
12. Kataev A. L. Analytical eighth-order light-by-light QED contributions from leptons with heavier masses to the anomalous magnetic moment of electron. Physical Review D, 2012, vol. 86, no. 1, art. 013010. https://doi.org/10.1103/physrevd.86.013010
13. Laursen M. L., Samuel M. A. The n-bubble diagram contribution to g – 2 of the electron. Mathematical structure of the analytical expression. Physics Letters B, 1980, vol. 91, no. 2, pp. 249–252. https://doi.org/10.1016/0370-2693(80)90443-8
14. Aguilar J.-P., Rafael E. de, Greynat D. Muon anomaly from lepton vacuum polarization and the Mellin-Barnes representation. Physical Review D, 2008, vol. 77, no. 9, art. 093010. https://doi.org/10.1103/physrevd.77.093010
15. Solovtsova O. P., Lashkevich V. I., Sidorov A. V. On the contribution of three-bubble diagrams to (g-2)L. Nonlinear Dynamics and Applications. Proc. XXVI Annual Seminar NPCS’2019, May 21–24. Minsk, 2019, vol. 25, pp. 103–112.
16. Kurz A., Liu T., Marquard P., Steinhauser M. Anomalous magnetic moment with heavy virtual leptons. Nuclear Physics B, 2014, vol. 879, pp. 1–18. https://doi.org/10.1016/j.nuclphysb.2013.11.018
17. Bateman H., Erdelyi A. Higher Transcendental Functions. Vol. 1. New York, McGraw-Hill, 1953. 302 p.
18. Boos E. E., Davydychev A. I. A method of evaluating massive Feynman integrals. Theoretical and Mathematical Physics, 1991, vol. 89, no. 1, pp. 1052–1063. https://doi.org/10.1007/bf01016805
19. Friot S., Greynat D., Rafael E de. Asymptotics of Feynman diagrams and the Mellin–Barnes representation. Physics Letters B, 2005, vol. 628. no. 1–2, pp. 73–84. https://doi.org/10.1016/j.physletb.2005.08.126