1. Fejér L. Untersuchungen über Fouriersche Reihen. Mathematische Annalen, 1904, vol. 58, no. 1‒2, pp. 51‒69. https://doi.org/10.1007/bf01447779
2. Lebesgue H. Sur les intégrales singulières. Annales de la faculté des sciences de Toulouse Mathématiques, 1909, vol. 1, pp. 25-117. https://doi.org/10.5802/afst.257
3. Bernstein S. Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degre donne. Mémoires de lʼAcadémie Royale des Sciences, Lettres et Beaux Arts de Belgique, 1912, vol. 4, no. 4, pp. 1-104.
4. Zygmund A. On the degree of approximation of functions by Fejér means. Bulletin of the American Mathematical Society, 1945, vol. 51, no. 4, pp. 274-278. https://doi.org/10.1090/s0002-9904-1945-08332-3
5. Dzhrbashian M. M. To Fourier series theory about rational functions. Izvestiya Akademii nauk Armyanskoi SSR. Seriya fiziko-matematicheskikh nauk [Proceedings of the Academy of Sciences of the Armenian SSR. Series of Physical and Mathematical Sciencies], 1956, vol. 9, no. 7, pp. 3‒28 (in Russian).
6. Rusak V. N. Rational Functions as Approximation Apparatus. Minsk, BSU, 1979. 179 p. (in Russian).
7. Petrushev P. P., Popov V. A. Rational Approximation of Real Functions. Cambridge University Press, 1988. 384 p. https://doi.org/10.1017/cbo9781107340756
8. Rovba E. A. Interpolation and Fourier Series in Rational Approximation. Grodno, Grodno State University, 2001. 106 p. (in Russian).
9. Lungu K. N. On best approximations by rational functions with a fixed number of poles. Matematicheskii sbornik Sbornik: Mathematics, 1971, vol. 86 (128), no. 2 (10), pp. 314-324 (in Russian).
10. Lungu K. N. On best approximations by rational functions with a fixed number of poles. Sibirskii matematicheskii zhurnal = Siberian Mathematical Journal, 1984, vol. 15, no. 2, pp. 151-160 (in Russian).
11. Rovba E. A. On approximation by rational functions with a given number of poles. Sovremennye problemy teorii funktsii: materialy Vsesoyuznoi shkoly po teorii funktsii [Modern Problems of the Theory of Functions: Materials All-Union. schools on the theory of functions]. Baku, 1980, pp. 234-239 (in Russian).
12. Starovoitov A. P. Approximation by Rational Functions with a Given Number of Poles. Minsk, BSU, 1984. 23 p. (in Russian).
13. Patseika P. G., Rovba Ya. A., Smatrytski K. A. On one rational integral operator of Fourier -Chebyshev type and approximation of Markov functions. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika = Journal of the Belarusian State University. Mathematics and Informatics, 2020, no. 2, pp. 6-27 (in Russian). https://doi.org/10.33581/2520-6508-2020-2-6-27
14. Patseika P. G., Rovba Ya. A. Fejer means of rational Fourier-Chebyshev series and approximation of function |x|s]. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika = Journal of the Belarusian State University. Mathematics and Informatics, 2019, no. 3, pp. 18-34 (in Russian). https://doi.org/10.33581/2520-6508-2019-3-18-34
15. Kazlouskaya N. Ju. On the approximation by rational trigonometric operators of Fejér type on Lipschitz classes. Vesnіk Grodzenskaga dzyarzhaўnaga ўnіversіteta іmya Yankі Kupaly. Seryya 2. Matematyka. Fіzіka. Іnfarmatyka, vylіchal'naya tekhnіka і kіravanne = Vesnik of Yanka Kupala State University of Grodno. Series 2. Mathematics. Physics. Informatics, Somputer Technology and its Sontrol, 2022, vol. 12, no. 2, pp. 13-22 (in Belarussian).
16. Kazlouskaya N. Yu., Rouba Ya. A. Approximation of the function |sin x|s by the partial sums of the trigon-mometric rational fourier series. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 1, pp. 11-17 (in Belarussian). https://doi.org/10.29235/1561-8323-2021-65-1-11-17
17. Ahiezer N. I. Lectures on Approximation Theory. Moscow, Nauka Publ., 1965. 408 p. (in Russian).
18. Erdelyi A. Asymptotic Expansions. Dover Publ., 1956. 128p.