On the approximation of the | sin |s x function by rational trigonometric operators of the Fejér type
https://doi.org/10.29235/1561-2430-2023-59-2-95-109
Abstract
Approximation by trigonometric Fourier series is a well-developed branch of the theory of approximation by polynomials. Methods of approximation by rational trigonometric Fourier series have not been researched so deeply yet. In particular, rational trigonometric operators of the Fejér type have not been used in the rational approximation with free poles. In this paper, we consider the approximation of the function | sin | , (0;2), ∈ s x s by rational trigonometric operators of the Fejér type. An integral representation of the remainder for the above-mentioned approximation is obtained. An estimate of approximations is found in the points of analyticity of the function | sin |s x under the condition that the corresponding system of rational functions is complete. It is shown that the order of uniform approximation in the case of approximation by rational Fejér functions with two geometrically different poles is higher than the order of approximation by trigonometric polynomials. As a result, an asymptotic estimation of the uniform approximation by trigonometric Fejér sums in the polynomial case is obtained.
About the Authors
N. Yu. KazlouskayaBelarus
Natallia Yu. Kazlouskaya – Postgraduate Student of the Department of Fundamental and Applied Mathematics
22, Ozheshko Str., 230023, Grodno
Ya. A. Rovba
Russian Federation
Yaugeni A. Rovba – Dr. Sc. (Physics and Mathematics),
Professor, Head of the Department of Fundamental and
Applied Mathematics
22, Ozheshko Str., 230023, Grodno
References
1. Fejér L. Untersuchungen über Fouriersche Reihen. Mathematische Annalen, 1904, vol. 58, no. 1‒2, pp. 51‒69. https://doi.org/10.1007/bf01447779
2. Lebesgue H. Sur les intégrales singulières. Annales de la faculté des sciences de Toulouse Mathématiques, 1909, vol. 1, pp. 25–117. https://doi.org/10.5802/afst.257
3. Bernstein S. Sur l’ordre de la meilleure approximation des fonctions continues par des polynomes de degre donne. Mémoires de lʼAcadémie Royale des Sciences, Lettres et Beaux Arts de Belgique, 1912, vol. 4, no. 4, pp. 1–104.
4. Zygmund A. On the degree of approximation of functions by Fejér means. Bulletin of the American Mathematical Society, 1945, vol. 51, no. 4, pp. 274–278. https://doi.org/10.1090/s0002-9904-1945-08332-3
5. Dzhrbashian M. M. To Fourier series theory about rational functions. Izvestiya Akademii nauk Armyanskoi SSR. Seriya fiziko-matematicheskikh nauk [Proceedings of the Academy of Sciences of the Armenian SSR. Series of Physical and Mathematical Sciencies], 1956, vol. 9, no. 7, pp. 3‒28 (in Russian).
6. Rusak V. N. Rational Functions as Approximation Apparatus. Minsk, BSU, 1979. 179 p. (in Russian).
7. Petrushev P. P., Popov V. A. Rational Approximation of Real Functions. Cambridge University Press, 1988. 384 p. https://doi.org/10.1017/cbo9781107340756
8. Rovba E. A. Interpolation and Fourier Series in Rational Approximation. Grodno, Grodno State University, 2001. 106 p. (in Russian).
9. Lungu K. N. On best approximations by rational functions with a fixed number of poles. Matematicheskii sbornik Sbornik: Mathematics, 1971, vol. 86 (128), no. 2 (10), pp. 314–324 (in Russian).
10. Lungu K. N. On best approximations by rational functions with a fixed number of poles. Sibirskii matematicheskii zhurnal = Siberian Mathematical Journal, 1984, vol. 15, no. 2, pp. 151–160 (in Russian).
11. Rovba E. A. On approximation by rational functions with a given number of poles. Sovremennye problemy teorii funktsii: materialy Vsesoyuznoi shkoly po teorii funktsii [Modern Problems of the Theory of Functions: Materials All-Union. schools on the theory of functions]. Baku, 1980, pp. 234–239 (in Russian).
12. Starovoitov A. P. Approximation by Rational Functions with a Given Number of Poles. Minsk, BSU, 1984. 23 p. (in Russian).
13. Patseika P. G., Rovba Ya. A., Smatrytski K. A. On one rational integral operator of Fourier –Chebyshev type and approximation of Markov functions. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika = Journal of the Belarusian State University. Mathematics and Informatics, 2020, no. 2, pp. 6–27 (in Russian). https://doi.org/10.33581/2520-6508-2020-2-6-27
14. Patseika P. G., Rovba Ya. A. Fejer means of rational Fourier-Chebyshev series and approximation of function |x|s]. Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika = Journal of the Belarusian State University. Mathematics and Informatics, 2019, no. 3, pp. 18–34 (in Russian). https://doi.org/10.33581/2520-6508-2019-3-18-34
15. Kazlouskaya N. Ju. On the approximation by rational trigonometric operators of Fejér type on Lipschitz classes. Vesnіk Grodzenskaga dzyarzhaўnaga ўnіversіteta іmya Yankі Kupaly. Seryya 2. Matematyka. Fіzіka. Іnfarmatyka, vylіchal'naya tekhnіka і kіravanne = Vesnik of Yanka Kupala State University of Grodno. Series 2. Mathematics. Physics. Informatics, Сomputer Technology and its Сontrol, 2022, vol. 12, no. 2, pp. 13–22 (in Belarussian).
16. Kazlouskaya N. Yu., Rouba Ya. A. Approximation of the function |sin x|s by the partial sums of the trigon-mometric rational fourier series. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2021, vol. 65, no. 1, pp. 11–17 (in Belarussian). https://doi.org/10.29235/1561-8323-2021-65-1-11-17
17. Ahiezer N. I. Lectures on Approximation Theory. Moscow, Nauka Publ., 1965. 408 p. (in Russian).
18. Erdelyi A. Asymptotic Expansions. Dover Publ., 1956. 128p.