1. Carlet, C. Boolean Functions for Cryptography and Coding Theory / C. Carlet. - Cambridge: Cambridge University Press, 2021. - 562 p. https://doi.org/10.1017/9781108606806
2. Mesnager, S. Bent Functions: Fundamentals and Results / S. Mesnager. - Cham: Springer, 2016. - 544 p. https://doi.org/10.1007/978-3-319-32595-8
3. Tokareva, N. Bent Functions: Results and Applications to Cryptography / N. Tokareva. - London; San Diego: Academic Press, 2015. - 202 p. https://doi.org/10.1016/C2014-0-02922-X
4. Carlet, C. Upper bounds on the numbers of resilient functions and of bent functions / C. Carlet, A. Klapper // Proceedings of the 23rd Symposium on Information Theory in the Benelux, Louvain-La-Neuve, Belgium, 2002. - [S. l.], 2002. - P. 307-314.
5. Rothhaus, O. On “bent” functions / O. Rothhaus // J. Comb. Theory, Ser. A. - 1976. - Vol. 20, № 3. - P. 300-305. https://doi.org/10.1016/0097-3165(76)90024-8
6. Агиевич, C. О продолжении до бент-функций и оценке сверху их числа / C. Агиевич // Прикладная дискретная математика. Приложение. - 2020. - Вып. 13. - C. 18-21. https://doi.org/10.17223/2226308X/13/4
7. Agievich, S. On the representation of bent functions by bent rectangles / S. Agievich // Probabilistic Methods in Discrete Mathematics: Fifth International Conference (Petrozavodsk, Russia, June 1-6, 2000). - Utrecht; Boston, 2002. - P. 121-135. https://doi.org/10.1515/9783112314104-013
8. Agievich, S. Bent rectangles / S. Agievich // Proceedings of the NATO Advanced Study Institute on Boolean Functions in Cryptology and Information Security (Moscow, September 8-18, 2007). - Amsterdam, 2008. - P. 3-22. https://doi.org/10.3233/978-1-58603-878-6-3
9. Potapov, V. An upper bound on the number of bent functions / V. Potapov // Arxiv [Preprint]. - 2021. - Mode of access: https://arxiv.org/abs/2107.14583. https://doi.org/10.48550/arxiv.2107.14583
10. Propagation characteristics of Boolean functions / B. Preneel [et al.] // Advances in Cryptology: Proceedings of EUROCRYPT’90. - Berlin; Heidelberg: Springer, 1991. - P. 161-173. - (Lecture Notes in Computer Science. Vol. 473). https://doi.org/10.1007/3-540-46877-3_14
11. Langevin, P. Counting all bent functions in dimension eight 99270589265934370305785861242880 / P. Langevin, G. Leander // Des. Codes Cryptogr. - 2011. - Vol. 59, № 1-3. - P. 193-205. https://doi.org/10.1007/s10623-010-9455-z
12. Leander, G. Construction of bent functions from near-bent functions / G. Leander, G. McGuire // J. Comb. Theory, Ser. A. - 2009. - Vol. 116, № 4. - P. 960-970. https://doi.org/10.1016/j.jcta.2008.12.004
13. Zheng, Y. Plateaued Functions / Y, Zheng, X.-M. Zhang // Information and Communication Security. ICICS 1999. - Berlin, Heidelberg: Springer, 1999. - P. 284-300. - (Lecture Notes in Computer Science. Vol. 1726). https://doi.org/https://doi.org/10.1007/978-3-540-47942-0_24