Prediction of solar flares using neutrino detectors of the second generation
https://doi.org/10.29235/1561-2430-2023-59-2-147-157
Abstract
In this paper, we propose a physics-based method of prediction high-energy solar flares (SFs) with the help of neutrino detectors utilizing coherent elastic neutrino-nucleus scattering (CEνNS). The behavior of neutrino beams passing through coupled sunspots (CSs) being the sources of future SFs is investigated. We consider the evolution of left-handed electron neutrino νeL and muon neutrino νμL beams formed in the convective zone after the passage of the Micheev – Smirnov – Wolfenstein resonance. It is assumed that the neutrinos possess the charge radius, the magnetic and anapole moments while the CS magnetic field is vortex, nonhomogeneous and has twisting. Estimations of the weakening of the neutrino beams after traversing the resonant layers are given. It is shown that for SFs this weakening could be registered by neutrino detectors of the second generation only when neutrinos have the Dirac nature.
About the Authors
O. M. BoyarkinBelarus
Oleg M. Boyarkin – Dr. Sc. (Physics and Mathematics),
Professor
4, Nezavisimosti Ave., 220030
I. O. Boyarkina
Italy
Iren O. Boyarkina – Ph. D., Assistant, Department of
Economics, Engineering, Society and Business Organisation
47, Paradise Str., Viterbo, Italy, 01100
References
1. Okun L. B., Voloshin M. B., Vysotsky M. I. Neutrino electrodynamics and possible consequences for solar neutrinos. Journal of Experimental and Theoretical Physics, 1986, vol. 91, p. 754–765.
2. Lingam M., Loeb A. The Extended Habitable Epoch of the Universe for Liquids Other than Water. Arxiv [Preprint], 2021. Available at: https://arXiv:2101.10341v1[astro-ph.EP]. https://doi.org/10.48550/arXiv.2101.10341
3. Carrington R.A., Description of a Singular Appearance seen in the Sun on September 1, 1859. Monthly Notices of the Royal Astronomical Society,1859, vol. 20, no. 1, pp. 13–15. https://doi.org/10.1093/mnras/20.1.13
4. Syrovatsky S. I. Acceleration of solar and galactic cosmic rays. Annals Review Astronomic and Astrophysics, 1981, vol. 20, p. 163.
5. Shibata K., Magara T. Solar Flares: Magnetohydrodynamic Processes. Living Reviews in Solar Physics, 2011, vol. 8, art. no. 6. https://doi.org/10.12942/lrsp-2011-6
6. Galloway D. J., Weiss N. O. Convection and magnetic fields in stars. The Astrophysical Journal, 1981, vol. 243, pp. 945–953. https://doi.org/10.1086/158659
7. Colak T., Qahwaji R. Automated Prediction of Solar Flares Using Neural Networks and Sunspots Associations. Soft Computing in Industrial Applications. Berlin, 2007, pp. 316–324. https://doi.org/10.1007/978-3-540-70706-6_29
8. Ahmed O. W., Qahwaji R., Colak T., Higgins P. A., Gallagher P. T., Bloomfield D. S. Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection. Solar Physics, 2013, vol. 283, no. 1, pp. 157–175. https://doi.org/10.1007/s11207-011-9896-1
9. Lee J. Y., Moon Y. J., Kim K. S., Park Y. D., Fletcher A. B. Prediction of daily maximum x-ray flux using multilinear regression and autore- gressive time-series methods. Journal the Korean Astronomical Society, 2007, vol. 40, no. 4, pp. 99–106. https://doi.org/10.5303/jkas.2007.40.4.099
10. Nishizuka N., Sugiura K., Kubo Y., Den M., Watari S., Ishii M. Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms. The Astrophysical Journal, 2017, vol. 835, no. 2, p. 156. https://doi.org/10.3847/1538-4357/835/2/156
11. Kanya Kusano, Tomoya Iju, Yumi Bamba, Satoshi Inoue. A physics-based method that can predict imminent large solar flares. Science, 2020, vol. 369, no. 6503, pp. 587–591. https://doi.org/10.1126/science.aaz2511
12. Kopeliovich V. B., Frankfurt L. L. Isotopic and chiral structure of neutral current. Journal of Experimental and Theoretical Physics, 1974, vol. 19, pp. 145–147
13. Freedman D. Z. Coherent effects of a weak neutral current. Physical Review D, 1974, vol. 9, no. 5, p. 1389–1392. https://doi.org/10.1103/physrevd.9.1389
14. Akimov D. Observation of coherent elastic neutrino-nucleus scattering. Science, 2017, vol. 357, no. 6356, pp. 1123–1126.
15. Akimov D. Yu., Berdnikova A. K., Belov V. A., Bolozdynya A. I., Burenkov A. A., Dolgolenko A. G., Efremenko Yu. V. [et al.]. Status of the RED-100 experiment. Journal of Instrumentation, 2017, vol. 12, no. 6, pp. C06018. https://doi.org/10.1088/1748-0221/12/06/c06018
16. Akimov D. Yu. The RED-100 experiment. The 2nd International Conference on Particle Physics and Astrophysics, 2016, Moscow, Russian Federation, October 10–14, 2016. Moscow, 2016.
17. Boyarkin O. M., Bakanova T. I. Solar neutrino oscillations in extensions of the standard model. Physical Review D, 2000, vol. 62, no. 7, pp. 075008. https://doi.org/10.1103/physrevd.62.075008
18. Boyarkin O. M., Boyarkina G. G. Influence of solar flares on behavior of solar neutrino flux. Astroparticle Physics, 2016, vol. 85, pp. 39–42. https://doi.org/10.1016/j.astropartphys.2016.09.006
19. Boyarkin O. M., Boyarkina I. O. Solar neutrinos as indicators of the Sun’s activity. International Journal of Modern Physics A, 2019, vol. 34, no. 33, pp. 1950227. https://doi.org/10.1142/s0217751x19502270
20. Pati J. C., Salam A. Lepton number as the fourth "color". Physical Review D, 1974, vol. 10, no. 1, pp. 275–289. https://doi.org/10.1103/physrevd.10.275
21. Mohapatra R. N., Pati J. C. Left-right gauge symmetry and an "isoconjugate" model of CP violation. Physical Review D, 1975, vol. 11, no. 3, pp. 566–571. https://doi.org/10.1103/physrevd.11.566
22. Senjanovic G., Mohapatra R. N. Exact left-right symmetry and spontaneous violation of parity. Physical Review D, 1975, vol. 12, no. 5, pp. 1502–1505. https://doi.org/10.1103/physrevd.12.1502
23. Nieves J. F. Electromagnetic properties of Majorana neutrinos. Physical Review D, 1982, vol. 26, no. 11, pp. 3152–3158. https://doi.org/10.1103/physrevd.26.3152
24. Kayser B. Introduction to massive neutrinos. Available at: https://inspirehep.net/files/cfc2b5513efd04d56b6f63b2ba9d0959 (accessed 12.12.2022).
25. Beda A. G., Brudanin V. B., Egorov V. G., Medvedev D. V., Pogosov V. S., Shirchenko M. V., Starostin A. S. The Results of Search for the Neutrino Magnetic Moment in GEMMA Experiment GEMMA Collaboration. Advances in High Energy Physics, 2012, vol. 2012, pp.1–12. https://doi.org/10.1155/2012/350150
26. Auerbach L. B., Burman R. L., Caldwell D. O., Church E. D., Donahue J. B., Fazely A., Garvey G. T. [et al.] (LSND Collaboration). Measurement of electron-neutrino electron elastic scattering. Physical Review D, 2001, vol. 63, no. 11, pp. 112001. https://doi.org/10.1103/physrevd.63.112001
27. Billur. A. A., Köksal M., Gutiérrez-Rodríguez A., Hernández-Ruíz M. A. Model-independent sensibility studies for the anomalous dipole moments of the ντ at the CLIC based e+e– and γe– colliders. Physical Review D, 2018, vol. 98. no. 9, pp. 095013. https://doi.org/10.1103/physrevd.98.095013
28. Deniz M., Lin S. T., Singh V., Li J., Wong H. T., Bilmis S., Chang C. Y. [et al.]. Measurement of -electron scattering cross section with a CsI(Tl) scintillating crystal array at the Kuo-Sheng nuclear power reactor. Physical Review D, 2010, vol. 81, no. 7, pp. 072001. https://doi.org/10.1103/physrevd.81.072001
29. Zel’dovich Ya. B. Electromagnetic interaction with parity violation. Soviet Journal of Experimental and Theoretical Physics, 1958, vol. 6, p. 1184.
30. Dubovik V. M., Cheshkov A. A. Toroidal dipole moment of a massless neutrino. Physics of Particles and Nuclei, 1974, vol. 5, p. 791.
31. Degrassi G., Sirlin A., Marciano W. J. Effective electromagnetic form factor of the neutrino. Physical Review D, 1989, vol. 39, no. 1, pp. 287–294. https://doi.org/10.1103/physrevd.39.287
32. Alexandreas D. E., Allen R. C., Berley D., Biller S. D., Burman R. L., Cady D. R., Chang C. Y. [et al.]. Observation of shadowing of ultrahigh-energy cosmic rays by the Moon and the Sun. Physical Review D, 1991, vol. 43, no. 5, pp. 1735–1738.
33. Dubovik V. M., Kuznetsov V. E. The toroid dipole moment of the neutrino. International Journal of Modern Physics A, 1998, vol. 13, no. 30, pp. 5257–5277. https://doi.org/10.1142/s0217751x98002419
34. Boyarkin O., Rein D. Neutrino mass and oscillation angle phenomena within the asymmetric left-right models. Physical Review D, 1996, vol. 53, no. 1, pp. 361–373. https://doi.org/10.1103/physrevd.53.361
35. Rosado A. Physical electroweak anapole moment for the neutrino. Physical Review D, 2000, vol. 61, no. 1, pp. 013001. https://doi.org/10.1103/physrevd.61.013001
36. Dvornikov M. S., Studenikin A. I. Electromagnetic form factors of a massive neutrino. Journal of Experimental and Theoretical Physics, 2004, vol. 99, no. 2, pp. 254–269. https://doi.org/10.1134/1.1800181
37. Nakagawa Y. A Numerical Study of the Solar Cycle. Solar Magnetic Fields. Springer-Verlag, New York, 1971, pp. 725–736. https://doi.org/10.1007/978-94-010-3117-2_86
38. Vidal J., Wudka J. Non-dynamical contributions to left-right transitions in the solar neutrino problem. Physics Letters B, 1990, vol. 249, no. 3–4, pp. 473–477. https://doi.org/10.1016/0370-2693(90)91019-8
39. Smirnov A. Yu. The geometrical phase in neutrino spin precession and the solar neutrino problem. Physics Letters B, 1991, vol. 260, no. 1–2, pp. 161–164. https://doi.org/10.1016/0370-2693(91)90985-y
40. Aneziris C., Schechter J. Neutrino “spin rotation” in a twisting magnetic field. International Journal of Modern Physics A, 1991, vol. 06, no. 13, pp. 2375. https://doi.org/10.1142/s0217751x91001179
41. Toshev S. Resonant neutrino “spin-rotation” in a twisting magnetic field. Analytical results. Physics Letters B, 1991, vol. 271, no. 1–2, pp. 179. https://doi.org/10.1016/0370-2693(91)91296-8
42. Akhmedov E. Kh., Petcov S. T., Smirnov A. Yu. Pontecorvo’s original oscillations revisited. Physics Letters B, 1993, vol. 309, no. 1–2, pp. 95–102. https://doi.org/10.1016/0370-2693(93)91510-t