RELATION BETWEEN ONE-SOLITON COMPONENTS OF TWO-SOLITON SOLUTION FOR THE KORTEWEG-DE VRIES EQUATION
Abstract
The system of third-order nonlinear differential equations for components of two-soliton solution of the Korteweg-de Vries equation at t → ± ∞ is constructed. The equation describing the relation between these components is derived, and a general solution of this equation is obtained for one special case.
About the Authors
M. A. KnyazevBelarus
N. G. Blinkova
Belarus
References
1. Абловиц М., Сигур Х. Солитоны и метод обратной задачи. М., 1987.
2. Lidsey J. E. // arXiv: astro-phys/ 1205.5641 [Electronic resource].
3. Haret C. R. // Mod. Phys. Lett. A. 2002. Vol. 17, N 11. P. 667–670.
4. Faraoni V. // Am. J. Phys. 1999. Vol. 67, N 8. P 732–734.
5. Rosu H. C. // Mod. Phys. Lett. A. 2000. Vol. 15, N 15. P. 979–990.
6. Rosu H. C. // Mod. Phys. Lett. A. 2001. Vol. 16, N 17. P. 1147–1150.
7. Spergel D. N. et al // Astrophys. J. Suppl. 2003. Vol. 148, N 1. P. 97–118.
8. Khoury J., Seinhardt P. J., Turok N. // Phys. Rev. Lett. 2003. Vol. 91, N 16. 161301.
9. Tao Geng, Wen-Rui Shan // Phys. Lett. A. 2007. Vol. 372, N 10. P. 1626–1630.
10. Lou S. Y. // arXiv: nlin/ 1308.589 [Electronic resource].
11. Hille E. Ordinary Differential Equations in the Complex Domain. New York, 1976.
12. Лэм Дж. Л. Введение в теорию солитонов. М., 1983.
13. Зайцев В. Ф., Полянин А. Д. Справочник по обыкновенным дифференциальным уравнениям. М., 2001.