Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

RELATION BETWEEN ONE-SOLITON COMPONENTS OF TWO-SOLITON SOLUTION FOR THE KORTEWEG-DE VRIES EQUATION

Abstract

The system of third-order nonlinear differential equations for components of two-soliton solution of the Korteweg-de Vries equation at t → ± ∞ is constructed. The equation describing the relation between these components is derived, and a general solution of this equation is obtained for one special case.

About the Authors

M. A. Knyazev
Belarusian National Technical University, Minsk
Belarus


N. G. Blinkova
Belarusian National Technical University, Minsk
Belarus


References

1. Абловиц М., Сигур Х. Солитоны и метод обратной задачи. М., 1987.

2. Lidsey J. E. // arXiv: astro-phys/ 1205.5641 [Electronic resource].

3. Haret C. R. // Mod. Phys. Lett. A. 2002. Vol. 17, N 11. P. 667–670.

4. Faraoni V. // Am. J. Phys. 1999. Vol. 67, N 8. P 732–734.

5. Rosu H. C. // Mod. Phys. Lett. A. 2000. Vol. 15, N 15. P. 979–990.

6. Rosu H. C. // Mod. Phys. Lett. A. 2001. Vol. 16, N 17. P. 1147–1150.

7. Spergel D. N. et al // Astrophys. J. Suppl. 2003. Vol. 148, N 1. P. 97–118.

8. Khoury J., Seinhardt P. J., Turok N. // Phys. Rev. Lett. 2003. Vol. 91, N 16. 161301.

9. Tao Geng, Wen-Rui Shan // Phys. Lett. A. 2007. Vol. 372, N 10. P. 1626–1630.

10. Lou S. Y. // arXiv: nlin/ 1308.589 [Electronic resource].

11. Hille E. Ordinary Differential Equations in the Complex Domain. New York, 1976.

12. Лэм Дж. Л. Введение в теорию солитонов. М., 1983.

13. Зайцев В. Ф., Полянин А. Д. Справочник по обыкновенным дифференциальным уравнениям. М., 2001.


Review

Views: 740


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)