The structure and micromechanical properties of TiAlSiN, TiAlSiCN coatings formed by the method of reactive magnetron sputtering
https://doi.org/10.29235/1561-2430-2023-59-3-241-252
Abstract
Nanostructured nitride TiAlSiN and carbonitride TiAlSiCN coatings are herein formed by reactive magnetron sputtering on various types of substrates: single-crystal silicon (100) and Titanium Grade2. To control and manage the coating process, the developed modular gas flow control complex (MGFCC) is used. The elemental composition is studied byenergy dispersive X-ray spectroscopy (EDX), the structure by X-ray diffraction (XRD), the morphology by scanning electron microscopy (SEM), whereas the micromechanical properties by nanoindentation. It is discovered that the formed coatings over the entire range of parameters α = 0.421–0.605 have a single-phase structure (Ti,Al)N, which is a disordered solid solution with a face-centered cubic (fcc) lattice. The average crystallite size of the (Ti,Al)N phase varies in the range (20–30) ± 5 nm. It is found that a decrease in the degree of reactivity α from α = 0.605 to α = 0.421 leads to an increase in the rate of deposition of nitride TiAlSiN and carbonitride TiAlSiСN coatings on silicon substrates by 200–300 %. The hardness of the formed coatings varies in the range H = 28.74–48.99 GPa, Young’s modulus E = 324.97–506.12 GPa. TiAlSiN, TiAlSiCN coatings demonstrate high values of impact strength indices H/E* = 0.07–0.12 and plastic deformation resistance indices H3/E*2 = 0.13–0.72. It is detected that the degree of reactivity α has a significant effect on the micromechanical properties of the formed coatings. The structure and micromechanical properties of the formed nanostructured nitride and carbonitride TiAlSiN, TiAlSiCN coatings are suitable for use in space technology applications.
About the Authors
S. V. KonstantinovBelarus
Stanislav V. Konstantinov, Ph. D. (Physics and Mathematics), Associate Professor, Senior Researcher
Elionics Laboratory
220045
7, Kurchatov Str.
Minsk
F. F. Komarov
Belarus
Fadei F. Komarov, Academician of the National Academy of Sciences of Belarus, Dr. Sc. (Physics and Mathematics), Professor, Head of the Laboratory
Elionics Laboratory
220045
7, Kurchatov Str.
Minsk
I. V. Chizhov
Belarus
Igor V. Chizhov, Postgraduate Student
220045
5, Kurchatov Str.
Minsk
V. A. Zaikov
Belarus
Valery A. Zaikov, Senior Researcher
Department of Physical Electronics and Nanotechnologies
220045
5, Kurchatov Str.
Minsk
References
1. Vityaz P. A., Svidunovich N. A., Kuis, D. V. Nanomaterials Science, Minsk, Vysshaya shkola Publ., 2015. 511 p. (in Russian).
2. Komarov F. F., Konstantinov S. V., Zaikov V. A., Pil’ko V. V. Effects of Protone Irradiation on the Structural-Phase State of Nanostructured TiZrSiN Coatings and Their Mechanical Properties. Journal of Engineering Physics and Thermophysics, 2021, vol. 94, no. 6, pp. 1609–1618. doi: 10.1007/s10891-021-02442-2
3. Li X., Li G., Lü W., Liu S., Li C., Wang Q. Controllable high adhesion and low friction coefficient in TiAlCN coatings by tuning the C/N ratio. Applied Surface Science, 2022, vol. 597, pp. 153542. doi: 10.1016/j.apsusc.2022.153542
4. Tillmann W., Grisales D., Stangier D., Thomann C., Debus J., Nienhaus A., Apel D. Residual stresses and tribomechanical behaviour of TiAlN and TiAlCN monolayer and multilayer coatings by DCMS and HiPIMS. Surface and Coatings Technology, 2021, vol. 406, pp. 126664. doi: 10.1016/j.surfcoat.2020.126664
5. Komarov F. F., Konstantinov S. V., Żuk J., Droździel A., Pyszniak K., Chizhov I. V., Zaikov V. A. Structure and mechanical properties of TiAlN coatings under high-temperature Ar+ ion irradiation. Acta Physica Polonica A, 2022, vol. 142, no. 6, pp. 690–696. doi: 10.12693/aphyspola.142.690
6. Konstantinov S. V., Komarov F. F., Pilko V. V., Kukareko V. A. Wear resistance and radiation tolerance of He+-irradiated magnetron sputtered TiAlN coatings. High Temperature Material Processes, 2014, vol. 18, no 1–2, pp. 135–141. doi: 10.1615/HighTempMatProc.2015015569
7. Cavaleiro A., De Hosson J. T. M. Nanostructured Coatings. Springer, New York, 2006. 648 p. doi: 10.1007/978-0-387-48756-4
8. Veprek S., Reiprich S. A concept for the design of novel superhard coatings. Thin Solid Films, 1995, vol. 268, iss. 1–2, pp. 64–71. doi: 10.1016/0040-6090(95)06695-0
9. Veprek S., Haussmann M., Reiprich S. Superhard nanocrystalline W2N/amorphous Si3N4 composite materials. Journal of Vacuum Science and Technology A, 1996, vol. 14, no. 1, pp. 46–51. doi: 10.1116/1.579878
10. Veprek S. The search for novel, superhard materials. Journal of Vacuum Science and Technology A, 1999, vol. 17, no. 5, pp. 2401–2420. doi: 10.1116/1.581977
11. Veprek S., Argon A. S. Towards the understanding of mechanical properties of super- and ultrahard nanocomposites. Journal of Vacuum Science and Technology B, 2002, vol. 20, no. 2, pp. 650–664. doi: 10.1116/1.1459722
12. Veprek S. Different approaches to superhard coatings and nanocomposites. Thin Solid Films, 2005, vol. 476, no. 1, pp. 1–29. doi: 10.1016/j.tsf.2004.10.053
13. Pogrebnjak A. D., Bagdasaryan A. A., Pshyk A., Dyadyura K. Adaptive multicomponent nanocomposite coatings in surface engineering. Uspekhi Fizicheskih Nauk, 2017, vol. 187, no. 6, pp. 629–652. doi: 10.3367/UFNr.2016.12.038018
14. Zhang X., Li J., Xiao J., Pi J., He G., Chen L., Zeng Y., Jiang J. Effects of Si addition on structure and mechanical properties of TiAlSiCN coatings. Surface and Coatings Technology, 2019, vol. 362, pp. 21–26. doi: 10.1016/j.surfcoat.2019.01.056
15. Pandey K. M., Chaurasiya R. A review on analysis and development of solar flat plate collector. Renewable and Sustainable Energy Reviews, 2017, vol. 67, pp. 641–650. doi: 10.1016/j.rser.2016.09.078
16. Guo F., Li K., Huang X., Xie Z., Gong F. Understanding the wear failure mechanism of TiAlSiCN nanocomposite coating at evaluated temperatures. Tribology International, 2021, vol. 154, pp. 106716. doi: 10.1016/j.triboint.2020.106716
17. Golizadeh M., Kuptsov K. A., Shvyndina N. V., Shtansky D. V. Multilayer SiBCN/TiAlSiCN and AlOx/TiAlSiCN coatings with high thermal stability and oxidation resistance. Surface and Coatings Technology, 2017, vol. 319, pp. 277–285. doi: 10.1016/j.surfcoat.2017.04.016
18. Kuptsov K. A., Kiryukhantsev-Korneev Ph. V., Sheveyko A. N., Shtansky D. V. Structural transformations in TiAlSiCN coatings in the temperature range 900–1600 °C. Acta Materialia, 2015, vol. 83, pp. 408–418. doi: 10.1016/j.actamat.2014.10.007
19. Jyothi J., Soum-Glaude A., Nagaraja H. S., Barshilia H. C. Measurement of high temperature emissivity and photothermal conversion efficiency of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO spectrally selective coating. Solar Energy Materials and Solar Cells, 2017, vol. 171, pp. 123–130. doi: 10.1016/j.solmat.2017.06.057
20. Komarov F. F., Pil’ko V. V., Klimovich I. M. Influence of Conditions Employed in Application of Ti–Zr–Si–N Nanostructured Coatings on their Composition, Structure, and Tribomechanical Properties. Journal of Engineering Physics and Thermophysics, 2015, vol. 88, no. 2, pp. 358–363. doi: 10.1007/s10891-015-1200-z
21. Klimovich I. M., Kuleshov V. N., Zaikov V. A., Burmakov A. P., Komarov F. F., Ludchik O. R. Gas flow control system in reactive magnetron sputtering technology. Pribory i metody izmerenii = Devices and methods of measurements, 2015, vol. 6, no. 2, pp. 139–147 (in Russian).
22. Konstantinov S. V., Komarov F. F., Chizhov I. V., Zaikov V. A. Structural-phase states and micromechanical properties of nanostructured tialcun coatings TiAlCuN. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2023, vol. 67, no. 2, рр. 101–110 (in Russian). doi: 10.29235/1561-8323-2023-67-2-101-110
23. Oliver W. C., Pharr G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004, vol. 19, no. 1, pp. 3–20. doi: 10.1557/jmr.2004.19.1.3
24. Konstantinov S. V., Komarov F. F. Effects of nitrogen selective sputtering and flaking of nanostructured coatings TiN, TiAlN, TiAlYN, TiCrN, (TiHfZrVNb)N under helium ion irradiation. Acta Physica Polonica A, 2019, vol. 136, no. 2, pp. 303–309. doi: 10.12693/APhysPolA.136.303
25. Samsonov G. V., Vinitsky I. M. Refractory Compounds. 2<sup>nd</sup> ed. Moscow, Metallurgiya Publ., 1976. 560 р. (in Russian).
26. Komarov F. F., Konstantinov S. V., Strel’nitskij V. E. Radiation resistance of nanostructured TiN, TiAlN, TiAlYN coatings. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2014, vol. 58, no. 6, pp. 22–27 (in Russian). doi: 10.1134/S106378421605011X
27. Jyothi J. A., Biswas P. Sarkar Optical properties of TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber coatings by phase-modulated spectroscopic ellipsometry. Applied Physics A, 2017, vol. 123, no. 7. pp. 496. URL: https://www.researchgate.net/publication/318185660_Optical_properties_of_TiAlCTiAlCNTiAlSiCNTiAlSiCOTiAlSiO_tandem_absorber_coatings_by_phase-modulated_spectroscopic_ellipsometry
28. Konstantinov S. V., Wendler E., Komarov F. F., Zaikov V. A. Radiation tolerance of nanostructured TiAlN coatings under Ar+ ion irradiation. Surface and Coatings Technology, 2020, vol. 386, pp. 125493. doi: 10.1016/j.surfcoat.2020.125493
29. Leyland A., Matthews A. Design criteria for wear-resistant nanostructured and glassy-metal coatings. Surface and Coatings Technology, 2004, vol. 177–178, pp. 317–324. doi: 10.1016/j.surfcoat.2003.09.011
30. Musil J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surface and Coatings Technology, 2012, vol. 207, pp. 50–65. doi: 10.1016/j.surfcoat.2012.05.073
31. Konstantinov S. V., Komarov F. F., Chizhov I. V., Zaikov V. A. Structure and mechanical properties of nanostructured nitride and carbonitride coatings TiAlCuN, TiAlCuCN. Poroshkovaya metallurgiya: inzheneriya poverkhnosti, novye kompozitsionnye materialy, svarka : sbornik dokladov 13-go Mezhdunarodnogo simpoziuma (Minsk, 5–7 aprelya 2023 g.). Y. 2 [Powder metallurgy: Surface Engineering, New Powder Composite materials. Welding. Collection of reports of the 13<sup>th</sup> International Symposium (Minsk, April 5–7, 2023). Vol. 2]. Minsk, 2023, pp. 283–290 (in Russian).