Studying the influence of transport model parameters on the results of passenger traffic calculations (using the case of St. Petersburg)
https://doi.org/10.29235/1561-2430-2023-59-3-253-264
Abstract
This study focuses on the development of mathematical modelling methods for transport and urban planning. The current research focuses on an innovative mathematical model for simultaneous calculation of passenger and transport flow intensity in urban agglomerations using a common transport graph. An assessment of the model limitation impact on the parameters of individual and public transportation systems in a city (urban agglomeration) is conducted. To verify the model, several experimental calculations are performed for the transport system of the St. Petersburg agglomeration. The model presented by the authors can be used in scientific research in urban and transport planning and in the development of design solutions in cities.
About the Authors
N. V. BulychevaRussian Federation
Nelya V. Bulycheva, Senior Researcher
190013
38, Serpukhovskaya Str.
St. Petersburg
D. V. Kapski
Belarus
Denis V. Kapski, Dr. Sc. (Engineering), Associate Professor, Vice-Chairman
220072
66, Nezavisimosti Ave.
Minsk
L. A. Losin
Russian Federation
Leonid A. Losin, Ph. D. (Engineering), Head of the Laboratory
190013
38, Serpukhovskaya Str.
St. Petersburg
References
1. Fyodorov V. P., Pahomova O. M., Losin L. A., Bulycheva N. V. Comprehensive modelling of the public and individual transport flows. Sotsial’no-ekonomicheskie problemy razvitiya transportnykh sistem gorodov i zon ikh vliyaniya : materialy XI Mezhdunarodnoi nauchno-prakticheskoi konferentsii [Social and economic problems of city transport systems and their influence development. Materials of the XI International scientific and practical conference]. Yekaterinburg, 2005, pp. 19–22 (in Russian).
2. Yakimov M. R. Transport Planning: creating transport models of cities. Moscow, Logos Publ., 2013. 188 p. (in Russian).
3. Gasnikov A. V., Dorn Yu. V., Nesterov Yu. E., Shpirko S. V. On the three-stage version of stable dynamic model. Matematicheskoe modelirovanie = Mathematical Modeling, 2014, vol. 26, no. 6, pp. 34–70 (in Russian).
4. Koryagin M. E. Optimal ratio of public and individual transport for transportation of the population in cities. Informatsionnye tekhnologii i matematicheskoe modelirovanie : materialy VII Vserossiiskoi nauchno-prakticheskoi konferentsii. Ch. 2 [Information technologies and mathematical modeling. Materials of the VII All-Russian scientific and practical conference. Part 2]. Tomsk, 2008, pp. 27–30 (in Russian).
5. Losin L. A. Designing of software complex for the solving of transport and urban problems in St. Petersburg. Sotsial’no-ekonomicheskie problemy razvitiya i funktsionirovaniya transportnykh sistem gorodov i zon ikh vliyaniya : materialy XXIII Mezhdunar. nauch.-prakt. konf. [Social and Economic Problems of City Transport Systems and Their Influence Areas Development and Functioning]. Minsk, 2017, pp. 88–95 (in Russian).
6. Economic and mathematical research: mathematical models and information technologies. Proceedings of the St. Petersburg Economic and Mathematical Institute of the Russian Academy of Sciences. Iss. 9. Mathematical models in the study of urban environment development processes. St. Petersburg, Nestor-istoriya Publ., 2015. 84 p. (in Russian).
7. Myagkov V. N., Palchikov N. S., Fyodorov V. P. Mathematical Support of Urban Planning. Leningrad, Nauka Publ., 1989. 145 p. (in Russian).
8. Fyodorov V. P. Mathematical model of passenger traffic formation. Izvestiya Akademii nauk SSSR. Seriya Tekhnicheskaya kibernetika [Technical Сybernetics of the USSR. Izvestiya], 1974, no. 4, pp. 17–26 (in Russian).
9. Pittel B. G. One simple probabilistic model of collective behavior. Problemy peredachi informatsii = Problems of Information Transmission, 1967, vol. 3, no. 3, pp. 37–52 (in Russian).
10. Erlander S., Stewart N. F. The Gravity Model in Transportation Analysis: theory and extensions. Utrecht, VSP, 1990. 226 p.
11. Losin L. A., Bulycheva N. V. The Research of Fare Impact on Transport Demand by Mathematical Modeling. Byulleten’ rezul’tatov nauchnykh issledovanii = Bulletin of Scientific Research Results, 2022, iss. 2, pp. 179–194 (in Russian). doi: 10.20295/2223-9987-2022-2-179-194
12. Sheleikhovski G. V. Transport Bases of the City Plan Composition. Leningrad, Giprogor Publ., 1936. 150 p. (in Russian).
13. Shesterov E. A., Kalyuzhny N. A., Losin L. A. The relevanceof the scientific heritage of M. S. Fishelson for solving problems of transport planning. Vestnik grazhdanskikh inzhenerov = Bulletin of Civil Engineers, 2020, vol. 17, no. 2, pp. 45–50 (in Russian). doi: 10.23968/1999-5571-2020-17-2-45-50
14. Kapski D. V., Losin L. A. Transport in Urban Planning. Part 1. Transport Planning: Mathematical Modeling. Minsk, Belarusian National Technical University, 2019. 94 p. (in Russian).
15. Wardrop J. Road Paper. Some theoretical aspects of road trafic research. Proceedings of the Institute of Civil Engineers, 1952, vol. 1, iss. 3, pp. 325–362. doi: 10.1680/ipeds.1952.11259
16. Palma A. de, Nesterov Y. Optimization Formulations and Static Equilibrium in Congested Transportation Networks. Louvain-la-Neuve, Belgium, 1998. 34 p.
17. Knight F. H. Some Fallacies in the Interpretation of Social Costs. Quarterly Journal of Economics, 1924. vol. 38, no. 4, pp. 582–606. doi: 10.2307/1884592
18. Beckmann M. J., McGuire C. B., Winsten C. B. Studies in the Economics of Transportation. New Haven, Yale University Press, 1956. 232 p.
19. Pittel B. G., Fyodorov V. P. Mathematical model of passenger traffic forecast in the urban transport network. Ekonomika i matematicheskie metody = Economics and Mathematical Methods, 1969, vol. 5, no. 5, pp. 744–757 (in Russian).
20. Movshovich S. M. Coherent design and coordinate minimization in solving convex programming problems. Ekonomika i matematicheskie metody = Economics and Mathematical Methods, 1976, vol. 12, no. 3, pp. 551–557 (in Russian).
21. Arrow K., Gurvitz L., Uzava H. Studies of Linear and Nonlinear Programming. Palo Alto, Stanford University Press, 1958.