1. Samarskii A. A. Theory of Difference Schemes. New York, Marcel Deccer Inc., 2001. 761 p. https://doi. org/10.1201/9780203908518
2. Thomée V. Stability theory for partial difference operators. SIAM Review, 1969, vol. 11, no. 2, pp. 152-195. https://doi. org/10.1137/1011033
3. Tadmor E. Stability analysis of finite-difference, pseudospectral and Fourier-Galerkin approximations for time-dependent problems. SIAM Review, 1987, vol. 29, no. 4, pp. 525-555. https://doi.org/10.1137/1029110
4. Matus P. Stability of difference schemes for nonlinear time-dependent problems. Computational Methods in Applied Mathematics, 2003, vol. 3, no. 2, pp. 313-329. https://doi.org/10.2478/cmam-2003-0020
5. Matus P. P., Marcinkiewicz G. L. On the stability of a monotone difference scheme for the Burgers equation. Differential Equations, 2005, vol. 41, no. 7, pp. 1003-1009. https://doi.org/10.1007/s10625-005-0241-z
6. Zhang Q., Wang X., Sun Z. Z. The pointwise estimates of a conservative difference scheme for Burgers’ equation. Numerical Methods for Partial Differential Equations, 2020, vol. 36, no. 6, pp. 1611-1628. https://doi.org/10.1002/num.22494
7. Matus P., Korolyova O., Chuiko M. Stability of the difference schemes for the equations of weakly compressible liquid. Computational Methods in Applied Mathematics, 2007, vol. 7, no. 3, pp. 208-220. https://doi.org/10.2478/cmam-2007-0012
8. Matus P. P., Chuiko M. M. Investigation of the stability and convergence of difference schemes for a polytropic gas with subsonic flows. Differential Equations, 2009, vol. 45, no. 7, pp. 1074-1085. https://doi.org/10.1134/S0012266109070143
9. Matus P., Kolodynska A. Nonlinear stability of the difference schemes for equations of isentropic gas dynamics. Computational Methods in Applied Mathematics, 2008, vol. 8, no. 2, pp. 155-170. https://doi.org/10.2478/cmam-2008-0011
10. Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numerica, 2003, vol. 12, pp. 451-512 https://doi.org/10.1017/S0962492902000156
11. Bressan A., Jensen H. K. On the convergence of Godunov scheme for nonlinear hyperbolic systems. Chinese Annals of Mathematics, 2000, vol. 21, no. 3, pp. 269-284. https://doi.org/10.1142/S0252959900000303
12. Korolyova O. M., Chuiko M. M., Denisenko N. V. Stability investigation of implicit difference schemes for equations of weakly compressible liquid. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2009, no. 4, rr. 35-42 (in Russian).
13. Godunov S. K. Equations of Mathematical Physics. Moscow, Nauka Publ., 1979. 391 p. (in Russian).
14. Jones W. B., Thron W. J. Continued Fraction. Analitical Theory and Application. Addison-Wesley Publishing Company, 1980. 428 p.
15. . Beardon A. F. Worpitzky’s Theorem on continued fractions. Journal of Computational and Applied Mathematics, 2001, vol. 131, no. 1-2, pp. 143-148. https://doi.org/10.1016/s0377-0427(00)00318-6