The semiclassical approximation of multiple functional integrals
https://doi.org/10.29235/1561-2430-2023-59-4-302-307
Abstract
In this paper, we study the semiclassical approximation of multiple functional integrals. The integrals are defined through the Lagrangian and the action. Of all possible trajectories, the greatest contribution to the integral is given by the classical trajectory x̅cl for which the action S takes an extremal value. The classical trajectory is found as a solution of the multidimensional Euler – Lagrange equation. To calculate the functional integrals, the expansion of the action with respect to the classical trajectory is used, which can be interpreted as an expansion in powers of Planck’s constant. The numerical results for the semiclassical approximation of double functional integrals are given.
About the Authors
V. B. MalyutinBelarus
B. O. Nurjanov
Uzbekistan
Berdakh O. Nurjanov – Ph. D. (Physics and Mathematics), Senior Researcher, Institute of Mathematics named after V. I. Romanovsky of the Academy of Sciences of the Republic of Uzbekistan ; Karakalpak State University named after Berdakh
9, University Str., 100174, Tashkent, Republic of Uzbekistan;
1, Ch. Abdirov Str., 230112, Nukus, Republic of Uzbekistan
References
1. Feynman R. P., Hibbs A. R. Quantum Mechanics and Path Integrals. New York, McGraw-Hill, 1965. 365 p.
2. Glimm J., Jaffe A. Quantum Physics. A Functional Integral Point of View. New York, Springer-Verlag, 1981. 417 p. https://doi.org/10.1007/978-1-4684-0121-9
3. Simon B. Functional Integration and Quantum Physics. New York, Academic Press, 1979. 295 p. https://doi.org/10.1016/s0079-8169(08)x6061-1
4. Langouche F., Roekaerts D., Tirapegui E. Functional Integration and Semiclassical Expansions. Dordrecht, Springer, 1982. 315 p. https://doi.org/10.1007/978-94-017-1634-5
5. Wio H. S. Application of Path Integration to Stochastic Process: An Introduction. World Scientific Publishing Company, 2013. 176 p.
6. Ayryan E. A., Egorov A. D., Kulyabov D. S., Malyutin V. B., Sevastyanov L. A. Application of functional integrals to stochastic equations. Mathematical Models and Computer Simulations, 2017, vol. 9, pp. 339–348. https://doi.org/10.1134/s2070048217030024
7. Kleinert H. Path Integrals in Quantum Mechanics, Statistics Polymer Physics, and Financial Markets. Singapore, World Scientific Publishing, 2004. 1504 p. https://doi.org/10.1142/9789812562197_fmatter
8. Egorov A. D., Sobolevsky P. I., Yanovich L. A. Functional Integrals: Approximate Evaluation and Applications. Dordrecht, Springer, 1993. 400 p. https://doi.org/10.1007/978-94-011-1761-6
9. Egorov A. D., Zhidkov Е. P., Lobanov Yu. Yu. Introduction to Theory and Applications of Functional Integration. Мoscow, Fizmatlit Publ., 2006. 400 p. (in Russian).
10. Мalyutin V. B., Nurjanov B. О. Semiclassical approximation of functional integrals. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2020, vol. 56, no. 2, pp. 166–174 (in Russian). https://doi.org/10.29235/1561-2430-2020-56-2-166-174
11. Malyutin V. B., Nurjanov B. O. Semiclassical approximation of functional integrals containing the centrifugal potential. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series, 2022, vol. 58, no. 4, pp. 389–397 (in Russian). https://doi.org/10.29235/1561-2430-2022-58-4-389–397
12. . Berezin I. S., Zhidkov N. P. Calculation Methods. Vol. 2. Мoscow, Fizmatlit Publ., 1959. 620 p. (in Russian).