A kinetic model of a quantum-dot microlaser
https://doi.org/10.29235/1561-2430-2023-59-4-328-337
Abstract
The results of a qualitative analysis of a semiclassical model of light generation in low-dimensional solidstate lasers, including quantum-dot microlasers and, on its basis, a numerical modelling of the regular pulsation regime that occurs under conditions of nonlinear shift and broadening of the resonant spectral gain line due to the influence of dipoledipoles interaction and absorption in quasi-resonant transitions on the dielectric susceptibility of the active medium are herein presented. The modelling of lasing was carried out for the parameters of semiconductor quantum-dot structures.
About the Authors
E. V. TimoshchenkoBelarus
Elena V. Timoshchenko – Ph. D. (Physics and Mathematics), Associate Professor, Head of the Department of Physics and Computer Technologies
1, Kosmonavtov Str., 212022, Mogilev, Republic of Belarus
V. A. Yurevich
Belarus
Vladimir A. Yurevich – Dr. Sc. (Physics and Mathematics), Professor. Professor of the Department of Physics and Computer Technologies
1, Kosmonavtov Str., 212022, Mogilev, Republic of Belarus
References
1. Baimuratov A. S., Rukhlenko I. D., Turkov V. K., Baranov A. V., Fedorov A. V. Quantum-dot supercrystals for future nanophotonics. Scientific Reports, 2013, no. 3, art. ID 1727, pp. 1–9. https://doi.org/10.1038/srep01727
2. Semchenko I. V. [et al.] Metamaterials and metasurfaces. Nauka i innovatsii = Science and Innovation, 2020, no. 8 (210), pp. 23–27 (in Russian).
3. Bekenstein R., Pikovski I., Pichler H., Shahmoon E., Yelin S. F., Lukin M. D. Quantum metasurfaces with atom arrays. Nature Physics, 2020, vol. 16, pp. 676–681. https://doi.org/10.1038/s41567-020-0845-5
4. Zhukov A. E. Lasers and Microlasers Based on Quantum Dots. Saint Petersburg, Politekh-Press Publ., 2019. 42 p. (in Russian).
5. Stock E., Albert F., Hopfmann C., Lermer M., Schneider C., Höfling S., Forchel A., Kamp M., Reitzenstein S. On-chip quantum optics with quantum dot microcavities. Advanced Materials, 2013, vol. 25, no. 5, pp. 707–710. https://doi.org/10.1002/adma.201202778
6. Wan Ya., Norman J., Li Q., Kennedy M. J., Liang D., Zhang Ch., Huang D. [et al.]. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 2017, vol. 4, no. 8, pp. 940–944. https://doi.org/10.1364/optica.4.000940
7. Apanasevich P. A. Fundamentals of the Theory of Interaction of Light with Matter. Minsk, Havuka i tekhnika Publ., 1977. 496 p. (in Russian).
8. Gadomskii O. N., Sukhov S. V. Near-field effect in an ultrathin nonlinear film of resonant atoms. Quantum Electronics, 1998, vol. 28, no. 6, pp. 514. https://doi.org/10.1070/qe1998v028n06abeh001261
9. Rupasov V. I., Yudson V. I. Boundary-value problems in nonlinear optics of resonant media. Soviet Journal of Quantum Electronics, 1982, vol. 12, no. 11, pp. 1415. https://doi.org/10.1070/qe1982v012n11abeh006090
10. Gadomskii O. N., Vlasov R. A. Surface Echo Spectroscopy. Minsk, Navuka i tekhnika Publ., 1990. 216 p. (in Russian).
11. Timoshchenko E. V., Yurevich V. A. Resonance model of regular radiation regimes of lasers based on semiconductor quantum-size structures. Poluprovodnikovye lazery i sistemy na ikh osnove: sbornik statei 12-go Belorussko-Rossiiskii seminara, Minsk, 27–31 maya 2019 goda [Semiconductor Lasers and Systems Based on Them. Collection of articles of the 12th Belarusian-Russian seminar, Minsk, May 27–31, 2019]. Minsk, Kovcheg Publ., 2019, pp. 137–140 (in Russian).
12. Garmire E. Resonant optical nonlinearities in semiconductors. IEEE Journal of Selected Topics in Quantum Electronics, 2000, vol. 6, no. 6, pp. 1094−1110. https://doi.org/10.1109/2944.902158
13. Ledentsov N. N., Ustinov V. M., Shchukin V. A., Kop’ev P. S., Alferov Zh. I., Bimberg D. Quantum dot heterostructures: fabrication, properties, lasers. Semiconductors, 1998, vol. 32, pp. 343–365. https://doi.org/10.1134/1.1187396
14. Malyshev V. A., Zapatero P. Á., Malyshev A. V., Malikov R. F., Ryzhov I. V. Nonlinear optical dynamics of a 2D semiconductor quantum dot super-crystal: Emerging multistability, self-oscillations and chaos. Journal of Physics: Conference Series, 2018, vol. 1220, pp. 012006. https://doi.org/10.1088/1742-6596/1220/1/012006
15. Ryzhov I. V., Malikov R. F., Malyshev A. V., Malyshev V. A. Nonlinear optical response of a two-dimensional quantum-dot supercrystal: Emerging multistability, periodic and aperiodic self-oscillations, chaos, and transient chaos. Physical Review A, 2019, vol. 100, no. 3, pp. 033820. https://doi.org/10.1103/physreva.100.033820