Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

STRUCTURAL AND OPTICAL CHARACTERISTICS OF Ge/Si NANOLAYERS WITH SPATIALY ORDERED GROUPS OF QUAUTUM DOTS

Abstract

Ge/Si nanostructures with closely spaced and interacting Ge quantum dots were grown by molecular beam epitaxy. It was found that the GeSi quantum rings with closely spaced Ge quantum dots can be formed by choosing suitable deposition rate and temperature of Ge. The unit cell parameters and Ge concentration in Ge/Si nanostructures were determined by the X-ray diffraction method. Intense luminescence bands caused by radiative recombination of excitons from both the Ge wetting layers and Ge quantum dots were found in photoluminescence spectra at 4.2 K.

About the Authors

A. V. Mudryi
Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk
Belarus


F. Mofidnakhai
Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk
Belarus


V. D. Zhivulko
Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk
Belarus


V. A. Zinovyev
Rzhanov Institute of Semiconductor Physics Siberian Branch of Russian Academy of Sciences, Novosibirsk
Russian Federation


A. V. Dvurechenskii
Rzhanov Institute of Semiconductor Physics Siberian Branch of Russian Academy of Sciences, Novosibirsk
Russian Federation


P. A. Kuchinskaja
Rzhanov Institute of Semiconductor Physics Siberian Branch of Russian Academy of Sciences, Novosibirsk
Russian Federation


Zh. V. Smagina
Rzhanov Institute of Semiconductor Physics Siberian Branch of Russian Academy of Sciences, Novosibirsk
Russian Federation


References

1. Zinovyev V. A., Dvurechenskii A. V., Kuchinskya P. A., Armbrister V. A. // Phys. Rev. Lett. 2013. Vol. 111, N 26. P. 265501-1-265501-5.

2. ChaisakulP., Marris-Morini D, Issella G. et al. // Appl. Phys. Lett. 2011. Vol. 99, N 14. P. 141106-1-141106-3.

3. Двуреченский А. В., Якимов А. И. // Изв. РАН. Сер. физ. 2009. Т. 73, № 1. С. 71-75.

4. GattiE., GrilliE., GuzziM. et al. // Appl. Phys. Lett. 2011. Vol. 93, N 3. P. 031106-1-031106-3.

5. LiangD., Bewers J. E. // Nature Photonics. 2010. Vol. 4, N 8. P. 511-517.

6. Лобанов Д. Н., Новиков А. В., Кудрявцев К. Е. и др. // Физика и техника полупроводников. 2012. Т. 46, вып. 11. С. 1448-1452.

7. Кучинская П. А., Зиновьев В. А., Ненашев А. В. и др. // Изв. вузов. Сер. Материалы электрон. техники. 2011. № 4. С. 42-46.

8. Зиновьев В. А., Двуреченский А. В., Кучинская П. А. и др. // Автометрия. 2013. Т. 49, № 5. С. 6-12.

9. Kiravittaya S., Rastelli A., Schmidt O. G. // Rep. Prog. Phys. 2009. Vol. 72, N 4. P. 046502-1-046502-17.

10. Yakimov A. I., Bloshkin A. A., Dvurechenskii A. V. // Phys. Rev. B. 2010. Vol. 81, N 11. P. 115434-1-115434-7.

11. Hartmann J. M., Gallas B., Zhang J., Harris J. J. // Semicond. Sci. Technol. 2000. Vol. 15. P. 370-77.

12. Мудрый А. В., Мофиднахаи Ф., Короткий А. В. и др. // Приборы и методы измерений. 2012. Т. 1, № 4. С. 44-50.


Review

Views: 455


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)