Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

METAL THERMODIFFUSION WHEN AFFECTED BY THE NON-DESTRUCTIVE PULSE LASER RADIATION

Abstract

The changes in the elemental composition of two-layer target when affected by the radiation of a G0R-100M ruby laser operating in the free oscillation regime were studied. The radiation flux density was varied from 104 до 5-105 Вт/см-2. The elemental composition of the target before and after irradiation was investigated by means of an ElvaX X-ray spectrometer. The investigations showed that affecting a thin layer (several ^m) nickel layer covering a titanium sample, the concentration of titanium in the surface stratum considerably (by a factor of 1.5 and more) increased. It is important that the titanium concentration with increasing the flux density of the operating irradiation increased monotonically in the mentioned space. The analogous phenomena on the laser irradiation effect on the back side of the thin cupper plate covered with nickel were observed. This testifies to the active metal diffusion from the target into the surface stratum in the zone of pulse heating of the investigated samples by means of laser radiation. 

About the Authors

S. S. Anufrik
Yanka Kupala State University of Grodno
Belarus


V. Ch. Belash
Yanka Kupala State University of Grodno
Belarus


S. V. Vasiliev
Yanka Kupala State University of Grodno
Belarus


A. Yu. Ivanov
Yanka Kupala State University of Grodno
Belarus


A. V. Kapytski
Yanka Kupala State University of Grodno
Belarus


References

1. Мирзоев Ф. Х., Панченко В. Я., Шелепин Л. А. // УФН. 1996. Т. 166, № 1. С. 3-32.

2. PaustovskyA. V., Shelnd'ko V. E. // Functional Materials. 1999. Vol. 6, no 5. P. 964-976.

3. Васильев С. В., Иванов А. Ю., Лиопо В. А. // ИФЖ. 2007. Т. 80, № 5. С. 12-18.

4. Абруков С. А. Теневые и интерференционные методы исследования оптических неоднородностей. Казань, 1962.

5. Островский Ю. И., Бутусов М. М., Островская Г. В. Голографическая интерферометрия. М., 1997.

6. Физические величины: шравочник / А. П. Бабичев и др. М., 1991.

7. Бонч-Бруевич А. М. и др. // ЖТФ. 1968. Т. 38, № 8. С. 851-855.

8. Бойко В. И. и др. // Докл. АН СССР. 1980. Т. 250, № 1. С. 78-82.

9. Астапчик С. А., Великевич С. П. // Весщ АН БССР. Сер. фiз.-тэхн. навук. 1988. № 4. С. 18-21.

10. Евтушенко А. А., Уханская О. М. // Инженер.-физ. журн. 1994. Т. 66, № 5. С. 627-633.

11. Бельков С. А., Гаранин С. Г. // Квантовая электроника. 1992. Т. 19, № 12. С. 1187-1190.

12. Григорьев Б. А., Нужный В. А., Шибанов Б. В. Таблицы для расчета нестационарных температур плоских тел при нагреве излучениями. М., 1971.

13. Лиопо В. А., Война В. В. Рентгеновская дифрактометрия. Гродно, 2003.

14. Бюргер М. Структура кристаллов и векторное пространство. М., 1961.

15. Лямшев Л. М. // УФН. 1981. Т. 135, № 4. С. 637-669.


Review

Views: 969


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)