Первичные черные дыры в ранней Вселенной, квантово-гравитационные поправки и инфляционная космология
https://doi.org/10.29235/1561-2430-2024-60-3-225-232
Анатацыя
Первичные черные дыры, возникающие в ранней Вселенной вследствие гравитационного коллапса материи высокой плотности, являются по сути детекторами происходящих в ней процессов. Так как эти черные дыры рождаются в высоких энергиях (близких к планковским) и радиусы их малы, то для них необходим учет квантово-гравитационных поправок. В настоящей работе в рамках обобщенного принципа неопределенности продолжено начатое автором ранее исследование квантово-гравитационных поправок и их вкладов в значения инфляционных параметров для первичных черных дыр в доинфляционную эпоху. В частности, в этой картине рассмотрен случай излучения (испарения) Хокинга для вышеуказанных черных дыр и получены явные формулы для соответствующих «сдвигов» основных параметров инфляции. Во всех случаях найдены выражения для соответствующей коррекции e-фолдингов в инфляционной модели. Сформулированы основные проблемы для дальнейшего исследования.
Аб аўтары
А. Шалыт-МарголинБеларусь
Спіс літаратуры
1. Zel’dovich Y. B., Novikov I. D. The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model. Astronomicheskii zhurnal = Soviet Astronomy, 1967, vol. 10, no. 4, pp. 602–603.
2. Hawking S. Gravitationally Collapsed Objects of Very Low Mass. Monthly Notices of the Royal Astronomical Society, 1971, vol. 152, no. 1, pp. 75–78. https://doi.org/10.1093/mnras/152.1.75
3. Carr B. J., Hawking S. W. Black Holes in the Early Universe. Monthly Notices of the Royal Astronomical Society, 1974, vol. 168, no. 2, pp. 399–415. https://doi.org/10.1093/mnras/168.2.399
4. Green A. M., Kavanagh B. J. Primordial Black Holes as a dark matter candidate. Journal of Physics G: Nuclear and Particle Physics, 2021, vol. 48, no. 4, art. ID 043001 (29 p). https://doi.org/10.1088/1361-6471/abc534
5. Carr B. J. The Primordial black hole mass spectrum. Astrophysical Journal, 1975, vol. 201, pt. 1, pp. 1–19. https://doi.org/10.1086/153853
6. Carr B. J. Primordial Black Holes as a Probe of Cosmology and High Energy Physics. Lecture Notes in Physics, 2003, vol. 631, pp. 301–321. https://doi.org/10.1007/978-3-540-45230-0_7
7. Carr B. J. Primordial black holes – recent developments. 22nd Texas Symposium, Stanford, 12–17 December 2004. Arxiv [Preprint], 2005. Available at: arXiv:astro-ph/0504034. https://doi.org/10.48550/arXiv.astro-ph/0504034
8. Prokopec T., Reska P. Scalar cosmological perturbations from inflationary black holes. Journal of Cosmology and Astroparticle Physics, 2011, vol. 2011, pp. 050. https://doi.org/10.1088/1475-7516/2011/03/050
9. Kiefer C. Quantum Gravity. 3rd ed. United Kingdom, Oxford University Press, 2012. 406 p. https://doi.org/10.1093/acprof:oso/9780199585205.001.0001
10. Shalyt-Margolin A. E. Some aspects of primary black holes in the early Universe and inflationary cosmology. Zhurnal Belorusskogo gosudarstvennogo universiteta. Fizika = Journal of the Belarusian State University. Physics, 2023, no. 2, pp. 74–81 (in Russian).
11. Padmanabhan T. Gravitation: Foundations and Frontiers. New York, USA, Cambridge University Press, 2010. 730 p. https://doi.org/10.1017/cbo9780511807787
12. Nariai H. On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case. General Relativity and Gravitation, 1999, vol. 31, pp. 951–961. https://doi.org/10.1023/a:1026698508110
13. Nariai H. On a new cosmological solution of Einstein’s field equations of gravitation. General Relativity and Gravitation, 1999, vol. 31, pp. 963–971. https://doi.org/10.1023/a:1026602724948
14. Casadio R., Giugno A., Giusti A., Lenzi M. Quantum formation of primordial black holes. General Relativity and Gravitation. 2019, vol. 51, art. ID 103 (10 p.). https://doi.org/10.1007/s10714-019-2587-1
15. Gorbunov D., Rubakov V. Introduction to the Theory of the Early Universe, Cosmological Perturbations and Inflationary Theory. Singapore, World Scientific Publ. Pte. Ltd, 2011. 504 p. https://doi.org/10.1142/9789814322232
16. Nouicer K. Quantum-corrected black hole thermodynamics to all orders in the Planck length. Physics Letters B, 2007, vol. 646, no. 2–3, pp. 63–71. https://doi.org/10.1016/j.physletb.2006.12.072
17. Amati D., Ciafaloni M., Veneziano G. Can spacetime be probed below the string size? Physics Letters B, 1989, vol. 216, no. 1–2, pp. 41–47. https://doi.org/10.1016/0370-2693(89)91366-x
18. Capozziello S., Lambiase G., Scarpetta G. The Generalized Uncertainty Principle from Quantum Geometry. International Journal of Theoretical Physics, 2000, vol. 39, pp. 15–22. https://doi.org/10.1023/a:1003634814685
19. Adler R. J., Santiago D. I. On gravity and the uncertainty principle. Modern Physics Letters A, 1999, vol. 14, no. 20, pp. 1371–1378. https://doi.org/10.1142/s0217732399001462
20. Maggiore M. Black hole complementarity and the physical origin of the stretched horizon. Physical Review D, 1994, vol. 49, no. 16, pp. 2918–2921. https://doi.org/10.1103/physrevd.49.2918
21. Maggiore M. A generalized uncertainty principle in quantum gravity. Physics Letters B, 1993, vol. 304, no. 1–2, pp. 65–69. https://doi.org/10.1016/0370-2693(93)91401-8
22. Tawfik A., Diab A. Generalized uncertainty principle: Approaches and applications. International Journal of Modern Physics D, 2014, vol. 23, № 12, art. ID 1430025. https://doi.org/10.1142/s0218271814300250
23. Adler R. J., Chen Pisin, Santiago D. I. The Generalized Uncertainty Principle and Black Hole Remnants. General Relativity and Gravitation, 2001, vol. 33, pp. 2101–2108. https://doi.org/10.1023/a:1015281430411
24. Corless R. M., Gonnet G. H., Hare D. E. G., Jerey D. J., Knuth D. E. On the Lambert W function. Advances in Computational Mathematics, 1996, vol. 5, pp. 329–360. https://doi.org/10.1007/bf02124750
25. Faddeev L. D. Mathematical View on Evolution of Physics. Priroda [Nature], 1989, no. 5, pp. 11–16 (in Russian).
26. Shalyt-Margolin A. E., Suarez J. G. Quantum mechanics at Planck scale and density matrix. Int. International Journal of Modern Physics D, 2003, vol. 12, no. 07, pp. 1265–1278. https://doi.org/10.1142/s0218271803003700
27. Shalyt-Margolin A. E., Tregubovich A. Ya. Deformed density matrix and generalized uncertainty relation in thermodynamics. Modern Physics Letters A, 2004, vol. 19, no. 01, pp. 71–81. https://doi.org/10.1142/s0217732304012812
28. Shalyt-Margolin A. E., Suarez J. G. Deformation of Density Matrix at The Early Universe and Bekenstein-Hawking Formula. Nonlinear Phenomena in Complex Systems. An Interdisciplinary Journal, 2004, vol. 7, no. 2, pp. 129–139.
29. Shalyt-Margolin A. E., Strazhev V. I. Vacuum Energy and Small Parameter at Planck Scale. Nonlinear Phenomena in Complex Systems An Interdisciplinary Journal, 2009, vol. 12, no. 1, pp. 102–105.
30. Bekenstein J. D. Black Holes and Entropy. Physical Review D, 1973, vol. 7, no. 8, pp. 2333–2346. https://doi.org/10.1103/physrevd.7.2333
31. Bekenstein J. D. Black holes and the second law. Lettere Al Nuovo Cimento, 1972, vol. 4, pp. 737–740. https://doi.org/10.1007/bf02757029
32. Frolov V. P., Novikov I. D. Black Hole Physics: Basic Concepts and New Developments. Dordrecht, Kluwer Academic, 1997. 787 p.
33. Brizuela D., Kiefer C., Kramer M., Robles-Pérez S. Quantum-gravity effects for excited states of inflationary perturbations and Salvador Robles-Perez. Physical Review D, 2019, vol. 99, no. 10, art. ID 104007. https://doi.org/10.1103/physrevd.99.104007
34. Kopinski Ja., Valiente Kroon Ju. A. Bach equation and the matching of spacetimes in conformal cyclic cosmology models. Physical Review D, 2022, vol. 106, no. 8, art. ID 084039. https://doi.org/10.1103/physrevd.106.084034