Left-invariant metric f-structures on three-dimensional sol vable Lie groups
https://doi.org/10.29235/1561-2430-2025-61-2-95-105
Abstract
In the paper, we investigate three-dimensional solvable Lie groups from the point of view of the generalized Hermitian geometry. The corresponding three-dimensional solvable Lie algebras were firstly classified by G. M. Mubarakzyanov in 1963. Using the classification in somewhat different notations, we construct basic left-invariant metric f-structures of rank 2 on all three-dimensional solvable Lie groups equipped with the standard left-invariant Riemannian metric. It was proved that all the considered f-structures belong to one or several classes of generalized almost Hermitian structures. As a result, it gives the opportunity to present new examples of left-invariant Killling, nearly Kähler, generalized nearly Kähler and Hermitian f-structures on solvable Lie groups.
About the Authors
V. V. BalashchenkoBelarus
Vitaly V. Balashchenko – Ph. D. (Physics and Mathematics), Associate Professor, Department of Geometry, Topology and Methods of Teaching Mathematics
4, Nezavisimosti Ave., 220030, Minsk
V. N. Kunitsa
Belarus
Victoria N. Kunitsa – Postgraduate Student, Department of Geometry, Topology and Methods of Teaching Mathematics
4, Nezavisimosti Ave., 220030, Minsk
References
1. Yano K. On a structure defined by a tensor field f of type (1,1) satisfying f 3 + f = 0. North-Holland Mathematics Studies, 1982, vol. 70, pp. 251–261. https://doi.org/10.1016/s0304-0208(08)72251-5
2. Kirichenko V. F. Quasihomogeneous manifolds and generalized almost Hermite structures. Mathematics of the USSR– Izvestiya, 1984, vol. 23, no. 3, pp. 473–486.
3. Kirichenko V. F. Methods of generalized Hermitian geometry in the theory of almost contact manifolds. Journal of Soviet Mathematics, 1988, vol. 42, no. 5, pp. 1885–1919. https://doi.org/10.1007/BF01094419
4. Kirichenko V. F. Differential-Geometric Structures on Manifolds. Moscow, Moscow City University, 2003. 495 p. (in Russian).
5. Stepanov N. A. Basic facts of the theory of φ-spaces. Izvestiya vuzov. Matematika = Soviet Mathematics (Iz. VUZ), 1967, no. 3, pp. 88–95 (in Russian).
6. Wolf J. A., Gray A. Homogeneous spaces defined by Lie group automorphisms. Journal of Differential Geometry, 1968, vol. 2, no. 1, pp. 77–114. https://doi.org/10.4310/jdg/1214501139
7. Fedenko A. S. Spaces with Symmetries. Moscow, Editorial URSS Publ., 2004. 168 p. (in Russian).
8. Kowalski O. Generalized Symmetric Spaces. Berlin, Springer-Verlag, 1980. 187 p. https://doi.org/10.1007/bfb0103325
9. Stepanov N. A. Homogeneous 3-cyclic spaces. Izvestiya vuzov. Matematika = Soviet Mathematics (Iz. VUZ), 1967, no. 12, pp. 65–74 (in Russian).
10. Gray A. Riemannian manifolds with geodesic symmetries of order 3. Journal of Differential Geometry, 1972, vol. 7, no. 3–4, pp. 343–369. https://doi.org/10.4310/jdg/1214431159
11. Balashchenko V. V., Stepanov N. A. Canonical affinor structures of classical type on regular Φ-spaces. Sbor nik: Mathematics, Sbornik: Mathematics, 1995, vol. 186, no. 11, pp. 1551–1580. https://doi.org/10.1070/SM1995v186n11ABEH000083
12. Balashchenko V. V. Naturally reductive Killing f-manifolds. Russian Mathematical Surveys, 1999, vol. 54, no. 3, pp. 623–625. https://doi.org/10.1070/rm1999v054n03ABEH000155
13. Balashchenko V. V. Homogeneous Hermitian f-manifolds. Russian Mathematical Surveys, 2001, vol. 56, no. 3, pp. 575–577. https://doi.org/10.1070/RM2001v056n03ABEH000401
14. Balashchenko V. V. Homogeneous Nearly Kähler f-Manifolds. Doklady Mathematics, 2001, vol. 63, no. 1, pp. 56–58.
15. Balashchenko V. V. Invariant nearly Kähler f-structures on homogeneous spaces. Global Differential Geometry: The Mathematical Legacy of Alfred Gray, 2001, vol. 288, pp. 263–267. https://doi.org/10.1090/conm/288/04831
16. Balashchenko V. V., Vylegzhanin, D. V. Generalized Hermitian geometry on homogeneous Φ-spaces of finite order. Russian Mathematics (Iz. VUZ), 2004, vol. 48, no. 10, pp. 30–40.
17. Balashchenko V. V., Samsonov A. S. Nearly Kähler and Hermitian f-structures on homogeneous k-symmetric spaces. Doklady Mathematics, 2010, vol. 81, no. 3, pp. 386– 389. https://doi.org/10.1134/s1064562410030130
18. Samsonov A. S. Nearly Kähler and Hermitian f-structures on homogeneous Φ-spaces of order k with special metrics. Siberian Mathematical Journal, 2011, vol. 52, no. 6, pp. 1373–1388. https://doi.org/10.1134/s0037446611060140
19. Klepikov P. N., Rodionov E. D., Khromova O. P. Three-dimensional nonunimodular Lie groups with a Riemannian metric of an invariant Ricci soliton and a semi-symmetric metric connection. Russian Mathematics (Iz. VUZ), 2022, vol. 66, no. 5, pp. 65–69.
20. Klepikov P. N., Rodionov E. D., Khromova O. P. Einstein’s equation on three-dimensional metric Lie groups with vector torsion. Proceedings of the International Conference. Journal of Mathematical Sciences, 2023, vol. 276, pp. 733–745. https://doi.org/10.1007/s10958-023-06796-1
21. Khromova O. P., Balashchenko V. V. Symmetric Ricci flows of semisymmetric connections on three-dimensional metrical Lie groups: An Analysis. Izvestiya Altaiskogo gosudarstvennogo universiteta = Izvestiya of Altai State University, 2023, no. 1, pp. 141–144 (in Russin).
22. Stong R. E. The rank of an f-structure. Kodai Mathematical Seminar Reports, 1977, vol. 29, no. 1–2, pp. 207–209. https://doi.org/10.2996/kmj/1138833583
23. Yano K., Kon M. CR Submanifolds of Kaehlerian and Sasakian Manifolds. Boston, Birkhäuser, 1983. 208 p. https:// doi.org/10.1007/978-1-4684-9424-2
24. Singh K. D., Singh Rakeshwar. Some f(3,ε) structure manifolds. Demonstratio Mathematica, 1977, vol. 10, no. 3–4, pp. 637–645. https://doi.org/10.1515/dema-1977-3-411
25. Gritsans A. S. On the geometry of Killing ff-manifolds. Russian Mathematical Surveys, 1990, vol. 45 no. 4, pp. 168–169. https://doi.org/10.1070/RM1990v045n04ABEH002365
26. Gritsans A. S. On construction of Killing f-manifolds. Russian Mathematics (Iz. VUZ), 1992, vol. 36, no. 6, pp. 46–54.
27. Gray A., Hervella L. M. The sixteen classes of almost Hermitian manifolds and their linear invariants. Annali di Matematica Pura ed Applicata, 1980, vol. 123, pp. 35–58. https://doi.org/10.1007/bf01796539
28. Gray A. Riemannian manifolds with geodesic symmetries of order 3. Journal of Differential Geometry, 1972, vol. 7, no. 3–4, pp. 343–369. https://doi.org/10.4310/jdg/1214431159
29. Kobayashi S., Nomizu K. Foundations of differential geometry. Vol. 2. Moscow, Nauka Publ., 1981. 414 p.
30. Balashchenko V. V. Invariant f-structures on naturally reductive homogeneous spaces. Russian Mathematics (Iz. VUZ), 2008, vol. 52, no. 4, pp. 1–12.
31. Balashchenko V. V. Invariant structures on the 6-dimensional generalized Heisenberg group. Kragujevac Journal of Mathematics, 2011, vol. 35, no. 2, pp. 209–222.
32. Balashchenko V. V., Dubovik P. A. Left-invariant f-structures on the 5-dimensional Heisenberg group H(2,1). Vestnik BGU. Seriya 1, Fizika. Matematika. Informatika = Bulletin of the Belarusian State University. Series 1, Physics. Mathematics. Informatics, 2013, no. 3, pp. 112–117 (in Russian)
33. Dubovik P. A. Hermitian f-structures on 6-dimensional filiform Lie groups. Russian Mathematics (Izvestiya VUZ. Matematika), 2016, vol. 60, iss. 7, pp. 29–36. https://doi.org/10.3103/S1066369X16070057
34. Mubarakzjanov G. M. On solvable Lie algebras. Izvestiya vuzov. Matematika = Soviet Mathematics (Iz. VUZ), 1963, no. 1, pp. 114–123.
35. Andrada A., Barberis M. L., Dotti L. G., Ovando G. P. Product structures on four dimensional solvable Lie algebras. Homology, Homotopy and Applications, 2005, vol. 7, no. 1, pp. 9–37. https://doi.org/10.4310/hha.2005.v7.n1.a2