Contributions to the anomalous magnetic moment of leptons from vacuum polarization described by mixed diagrams in the framework of the Mellin – Barnes method
https://doi.org/10.29235/1561-2430-2025-61-2-118-127
Abstract
The explicit form of the third-order electromagnetic corrections in the fine structure constant α3 to the anomalous magnetic moment of lepton aL (L = e,μ,τ) from the contribution of the sixth – order vertex graph with insertion of fourth – order vacuum polarization. The approach is based on the consistent application of dispersion relations for the polarization operator and the Mellin – Barnes transform for massive particle propagators. Explicit analytical expressions for the corrections to aL are obtained at r = mℓ/mL > 1. Asymptotic expansions are found in the limit of both small and large values of the lepton mass ratio (r = mℓ/mL), r ^ 1 and r → ∞. The expansions obtained are compared with the corresponding expressions given in the literature.
Keywords
About the Author
V. I. LashkevichBelarus
Vasil I. Lashkevich – Ph. D. (Physics and Mathematics), Associate Professor of the Higher Mathematics Department
Oktyabrya Ave., 48, 246746, Gomel
References
1. Dirac, P. A. M. The quantum theory of the electron / P. A. M. Dirac // Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. – 1928. – Vol. 117, № 778. – P. 610–624. https://doi.org/10.1098/rspa.1928.0023
2. Determination of the fine-structure constant with an accuracy of 81 parts per trillion / L. Morel, Z. Yao, P. Cladé, S. Guellati-Khélifa // Nature. – 2020. – Vol. 588. – P. 61–65. https://doi.org/10.1038/s41586-020-2964-7
3. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm / D. P. Aguillard, T. Albahri, D. Allspach [et al.]; Muon g – 2 Collaboration // Physical Review Letters. – 2023. – Vol. 131. – Art. ID 161802. https://doi.org/10.1103/physrevlett.131.161802
4. Laporta, S. Highprecision calculation of the 4loop QED contribution to the slope of the Dirac form factor / S. Laporta // Physics Letters B. – 2020. – Vol. 800. – Art. ID 135137. https://doi.org/10.1016/j.physletb.2019.135137
5. Volkov, S. Calculation of the total 10-th order QED contribution to the lepton magnetic moments / S. Volkov // Arxiv [Preprint]. – 2024. – Mode of access: https://arXiv:2404.00649 [hep-ph]; https://doi.org/10.48550/arXiv.2404.00649
6. Volkov, S. Calculation of lepton magnetic moments in quantumelectrodynamics: A justification of the flexible divergence elimination method / S. Volkov // Physical Review D. – 2024. – Vol. 109. – Art. ID 036012. https://doi.org/10.1103/PhysRevD.109.036012
7. Solovtsova, O. P. Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin–Barnes representation / O. P. Solovtsova, V. I. Lashkevich, L. P. Kaptari // European Physical Journal Plus. – 2023. – Vol. 138. – Art. ID 212. https://doi.org/10.1140/epjp/s13360-023-03834-4
8. Solovtsova, O. P. Contributions of QED diagrams with vacuum polarization insertions to the lepton anomaly within the Mellin–Barnes representation / O. P. Solovtsova, V. I. Lashkevich, L. P. Kaptari // Physics of Particles and Nuclei. – 2024. – Vol. 55. – P. 725–730. https://doi.org/10.1134/S1063779624700072
9. Solovtsova, O. P. Analytical calculations of the tenth order QED radiative corrections to leptonanomalies within the Mellin–Barnes representation / O. P. Solovtsova, V. I. Lashkevich, L. P. Kaptari // Journal of Physics G: Nuclear and Particle Physics. – 2024. – Vol. 51. – Art. ID 055001. https://doi.org/10.1088/1361-6471/ad2e32
10. Laporta, S. The analytical contribution of the sixth order graphs with vacuum polarization insertions to the muon (g-2) in QED / S. Laporta // Il Nuovo Cimento A. – 1993. – Vol. 106. – P. 675–683. https://doi.org/10.1007/bf02787236
11. Lautrup, B. E. Calculation of the sixth-order contribution from the fourth-order vacuum polarization to the difference of the anomalous magnetic moments of muon and electron / B. E. Lautrup, E. de Rafael // Physical Review. – 1968. – Vol. 174. – P. 1835–1842. https://doi.org/10.1103/PhysRev.174.1835
12. Migraco, J. A. Fourth-order vacuum polarization contribution to the sixth-order electron magnetic moment / J. A. Mig raco, E. Remiddi // Il Nuovo Cimento A. – 1969. – Vol. 60. – P. 519–529. https://doi.org/10.1007/bf02757285
13. CODATA recommended values of the fundamental physical constants: 2018 / E. Tiesinga, P. J. Mohr, D. B. Newell, B. N. Tay lor // Reviews of Modern Physics. – 2021.– Vol. 93, № 2. – Art. ID 025010. https://doi.org/10.1103/RevModPhys.93.025010