Simulation of a ballistic quantum-barrier field-effect transistor based on a zigzag metallic single-wall carbon nanotube
https://doi.org/10.29235/1561-2430-2025-61-2-139-148
Abstract
One of the possible designs of a double-gate quantum-barrier field-effect transistor based on a metallic single-wall carbon nanotube of the zigzag type is considered. The current-voltage characteristics of the transistor with the optimal geometry are calculated in the framework of the developed combined physical and mathematical model describing the charge carrier transport in the conducting channel of the transistor taking into account both quantum-dimensional effects and phonon scattering of particles. Optimum values of the nanotube length and diameter are determined at which the maximum values of the channel conductivity and the subthreshold swing are achieved for such a transistor.
About the Authors
D. V. PozdnyakovBelarus
Dmitry V. Pozdnyakov – Ph. D. (Physics and Mathematics), Associate Professor, Leading Researcher
4, Nezavisimosti Ave., 220030, Minsk
A. V. Borzdov
Belarus
Andrei V. Borzdov – Ph. D. (Physics and Mathematics), Leading Researcher
4, Nezavisimosti Ave., 220030, Minsk
V. M. Borzdov
Belarus
Vladimir M. Borzdov – Dr. Sc. (Physics and Mathematics), Professor, Head of the Department of Physical Electronics and Nanotechnologies
4, Nezavisimosti Ave., 220030, Minsk
References
1. Nanoelectronics and information technology: Advanced electronic materials and novel devices. Ed. by R. Waser. Weinheim, Wiley-VCH, 2012. 1040 p.
2. Appenzeller J. Carbon nanotubes for high-performance electronics – Progress and prospect. Proceedings of the IEEE, 2008, vol. 96, no. 2, pp. 201–211. https://doi.org/10.1109/JPROC.2007.911051
3. Zahoor F., Hanif M., Bature U. I., Bodapati S., Chattopadhyay A., Hussin F. A., Abbas H [et al.]. Carbon nanotube field effect transistors: an overview of device structure, modeling, fabrication and applications. Physica Scripta, 2023, vol. 98, no. 8, pp. 082003-1–33. https://doi.org/10.1088/1402-4896/ace855
4. Rotkin S. V., Hess K. Possibility of a metallic field-effect transistor. Applied Physics Letters, 2004, vol. 84, no. 16, pp. 3139–3141. https://doi.org/10.1063/1.1710717
5. Son Y.-W., Ihm J., Cohen M. L., Louie S. G., and Choi H. J. Electrical switching in metallic carbon nanotubes. Physical Review Letters, 2005, vol. 95, no. 21, pp. 216602-1–4. https://doi.org/10.1103/PhysRevLett.95.216602
6. Li Y., Rotkin S. V., Ravaioli U. Electronic response and bandstructure modulation of carbon nanotubes in a transverse electrical field. Nano Letters, 2003, vol. 3, no. 2, pp. 183–187. https://doi.org/10.1021/nl0259030
7. Zhou X., Chen H., Zhong-can O.-Y. Can electric field induced energy gaps in metallic carbon nanotubes? Journal of Physics: Condensed Matter, 2001, vol. 13, no. 27, pp. L635–L640. https://doi.org/10.1088/0953-8984/13/27/104
8. Li Y., Rotkin S. V., Ravaioli U. Metal-semiconductor transition in armchair carbon nanotubes by symmetry breaking. Applied Physics Letters, 2004, vol. 85, no. 18, pp. 4178–4180. https://doi.org/10.1063/1.1811792
9. Pozdnyakov D. V., Borzdov A. V., Borzdov V. M. Calculation of electrophysical characteristics of semiconductor quantum wire device structures with one-dimensional electron gas. Russian Microelectronics, 2023, vol. 52, suppl. 1, pp. S20–S29. https://doi.org/10.1134/S1063739723600401
10. Pozdnyakov D. V. Calculation of current-voltage characteristics of a ballistic transistor based on metallic single-wall carbon nanotube. Proceedings of 20th International Crimean Conference «Microwave & Telecommunication Technology», Sevastopol, 2010, vol. 2, pp. 869–871. https://doi.org/10.1109/crmico.2010.5632939
11. Radantsev V. F. Electron Properties of Semiconductor Nanostructures. Ekaterinburg, Ural State University, 2008. 420 p. (in Russian).
12. Wu Y. Q., Lin H. C., Ye P. D., Wilk G. D. Current transport and maximum dielectric strength of atomic-layer-deposited ultrathin Al2O3 on GaAs. Applied Physics Letters, 2007, vol. 90, no. 7, pp. 072105-1–3. https://doi.org/10.1063/1.2535528
13. Shamala K. S., Murthy L. C. S., Narasimha Rao K. Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method. Materials Science and Engineering: B, 2004, vol. 106, no. 3, pp. 269–274. https://doi.org/10.1016/j.mseb.2003.09.036
14. Lim S. C., Jang J. H., Bae D. J., Han G. H., Lee S., Yeo I.-S., Lee Y. H. Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Applied Physics Letters, 2009, vol. 95, no. 26, pp. 264103-1–3. https://doi.org/10.1063/1.3255016
15. Matsuda Yu, Deng W.-Q., Goddard W. A. Contact resistance properties between nanotubes and various metals from quantum mechanics. The Journal of Physical Chemistry C, 2007, vol. 111, no. 29, pp. 11113–11116. https://doi.org/10.1021/jp072794a
16. Pozdnyakov D. V., Borzdov V. M., Komarov F. F. Calculation of current-voltage characteristics of gallium arsenide symmetric double-barrier resonance tunneling structures with allowance for the destruction of electron-wave coherence in quantum wells. Semiconductors, 2004, vol. 38, no. 9, pp. 1061–1064. https://doi.org/10.1134/1.1797485
17. Kuroda M. A., Leburton J. P. High-field electrothermal transport in metallic carbon nanotubes. Physical Review B, 2009, vol. 80, no. 16, pp. 165417-1–10. https://doi.org/10.1103/PhysRevB.80.165417
18. Matsuda Y., Tahir-Kheli J., Goddard W. A. Definitive band gaps for single-wall carbon nanotubes. The Journal of Physical Chemistry Letters, 2010, vol. 1, no. 19, pp. 2946–2950. https://doi.org/10.1021/jz100889u
19. Harrison P., Valavanis A. Quantum Wells, Wires and Dots. Theoretical and Computational Physics of Semiconductor Nanostructures. Chichester, Hoboken, John Wiley & Sons, 2016. 598 p.
20. Pozdnyakov D. Validity of approximations applied in calculations of single-wall metallic carbon nanotube current-voltage characteristics. Journal of Computational Electronics, 2012, vol. 11, no. 4, pp. 397–404. https://doi.org/10.1007/s10825-012-0419-6
21. Pozdnyakov D. V. Influence of Electron Scattering on Electrophysical Properties of Semiconductor Structures with Low-dimensional Electron Gas. Minsk, 2004. 122 p. (in Russian).
22. Kashurnikov V. A., Krasavin A. V. Numerical Methods of Quantum Statistics. Мoscow, Fizmatlit Publ., 2010. 628 p. (in Russian).
23. Javey A., Guo J., Paulsson M., Wang Q., Mann D., Lundstrom M., and Dai H. High-field quasiballistic transport in short carbon nanotubes. Physical Review Letters, 2004, vol. 92, no. 10, pp. 106804-1–4. https://doi.org/10.1103/PhysRevLett.92.106804
24. Park J.-Y., Rosenblatt S., Yaish Y., Sazonova V., Üstünel H., Braig S., Arias T. A. [et al.]. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Letters, 2004, vol. 4, no. 3, pp. 517–520. https://doi.org/10.1021/nl035258c
25. Datta S. Electronic Transport in Mesoscopic Systems. Cambridge, Cambridge University Press, 1995. 377 p.