Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

RADIATION EFFECTS IN THIN HETEROEPITAXIAL INDIUM NITRIDE FILMS UNDER ELECTRON IRRADIATION

Abstract

The influence of high energy (6 MeV, fluencies 1015–1018 cm–2) electron irradiation on the shift of a fundamental absorption edge and on the luminescence properties of thin InN films, which were grown on sapphire substrates by the molecular-beam epitaxy method, has been studied. It is found that electron irradiation increases the electron concentration and optical band gap energy Eg of InN. The increase in the optical band gap energy Eg of irradiated thinInN films is caused by the formation of radiation defects of donor type and by a manifestation of the Burshtein – Moss effect.

About the Authors

A. V. Mudryi
Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus, Minsk
Belarus


V. D. Zhivulko
Scientific and Practical Materials Research Centre of the National Academy of Sciences of Belarus, Minsk
Belarus


A. L. Gurskii
Belarusian State University of Informatics and Radioelectronics, Minsk
Belarus


M. V. Yakushev
University of Strathclyde, Glasgow
United Kingdom


R. W. Martin
University of Strathclyde, Glasgow
United Kingdom


W. J. Schaff
Cornell University, Ithaca
United States


References

1. Adashi M. // Jap. J. Appl. Phys. 2014. Vol. 53, iss. 10. P. 100207-1–100207-8.

2. Ishitani Y. // Jap. J. Appl. Phys. 2014. Vol. 53, iss. 10. P. 100204-1–100204-17.

3. Fabien C. A. M., Moseley M., Gunning B. et al. // IEEE J. of Photovoltaics. 2014. Vol. 4, iss. 2. P. 601–605.

4. Wu J. // J. Appl. Phys. 2009. Vol. 106, iss. 1. P. 011101-1–011101-28.

5. Bhuiyan A. G., Sugita K., Hashimoto A., Yamamoto A. // IEEE J. of Photovoltaics. 2012. Vol. 2, no. 5. P. 276–293.

6. Davydov V. Yu., Klochikhin A. A., Emtsev V. V. et al. // Phys. Status Solidi B. 2002. Vol. 234, N 3. Р. 787–795.

7. Osamura K., Nakajima K., Murakami Y. et al. // Solid State Commun. 1972. Vol. 11, iss. 5. P. 617–621.

8. Reurings F., Rauch C., Tuomisto F. et al. // Phys. Rev. B. 2010. Vol. 82, iss. 15. P. 153202-1–153202-4.

9. Tuomisto F., Pelli A., Yu K. M. et al. // Phys. Rev. B. 2007. Vol. 75, iss. 19. P. 193201-1–193201-4.

10. Jones R. E., Li S. X., Hsu L. et al. // Physica B. 2006. Vol. 376/377. P. 436–439.

11. Walukiewicz W., Ager III J. W., Yu K. M. et al. // J. Phys. D: Appl. Phys. 2006. Vol. 39. P. R83–R99.

12. Lu H., Schaff W. J., Hwang J. et al. // Appl. Phys. Lett. 2001. Vol. 79, N 10. P. 1489–1491.

13. Уханов Ю. И. Оптические свойства полупроводников. М., 1977.

14. Li S. X., Jones R. E., Haller E. E. et al. // Appl. Phys. Lett. 2006. Vol. 88, iss. 15. P. 151101-1–151101-3.

15. Rauch C., Tuomisto F., King P. D. C. et al. // Appl. Phys. Lett. 2012. Vol. 101, iss. 1. P. 011903-1–011903-4.

16. Tangi M., Kuyyalil J., Shivaprasad S. M. // J. Appl. Phys. 2013. Vol. 114, iss. 15. P. 153501-1–153501-6.

17. Klochikhin A. A., Davydov V. Yu., Emtsev V. V. et al. // Phys. Rev. B. 2005. Vol. 71, iss. 19. P. 195207-1–195207-16.


Review

Views: 680


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)