Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

BIRATIONAL COMPOSITION OF QUADRATIC FORMS OVER A FUNCTION FIELD

Abstract

Let ƒ(X) and g(Y) be nonsingular quadratic forms over a field K having dimensions m and n  , charK≠ 2. The following problem of a birational compositions ƒ(X) and g(Y)is considered: under which conditions is the product ƒ(X) and g(Y)birationally equivalent over K to a quadratic form h(Z) of dimension m+n over K?
The main result of the paper is a complete solution of the birational composition problem for quadratic forms ƒ(X) and g(Y)over the function field F, char F ≠ 2.

About the Author

A. A. Bondarenko
Belarusian State University, Minsk
Belarus


References

1. HurwitzA. // Math. Ann. 1923. Bd. 88, N 1/2. S. 1-25.

2. Radon J. // Abh. Math. Sem. Univer. Humburg. 1922. Bd. 1, N 1. S. 1-14

3. Lam K. Y. // Quadratic and hermition Forms. CMS Conf. Proc. Vol. 4. Providence, 1984. P. 173-192

4. Pfister A. // Arch. Math. 1965. Bd. 16, N 1. P. 363-370.

5. Бондаренко А. А. // Весщ НАН Беларуи. Сер фiз.-мат. навук. 2007. № 4. С. 56-61.

6. Бондаренко А. А. // Мат. заметки. 2009. Т. 85, № 5. С. 661-670.

7. Бондаренко А. А. // Вестн. БГУ Сер. 1, Физика. Математика. Информатика. 2010. № 3. С. 90-93.

8. СеррЖ.-П. Курс арифметики. М., 1972.

9. Lam T. Y. Algebric theory of quadratic forms. Bengamin, 1973.

10. Knebush M., Scharlau W. Algebric Theory of quadratic forms. Generic methods and pfister forms. DMV Sem1. Boston, 1980.

11. О’Меат O. T. Introduction to Quadratic Forms. Berlin, 1971.

12. Бондаренко А. А. // Вестн. БГУ Сер. 1, Физика. Математика. Информатика. 2012. № 2. С. 106-110.


Review

Views: 770


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)