Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

ANALYTICAL PROPERTIES OF SOLUTIONS OF THE PROBLEM OF THE MOTION OF FOUR BODIES IN THE PLANE

Abstract

The purpose of the study is to establish the analytical properties of solutions of nonlinear differential equations describing the planar motion of four bodies. 50 sets of constant values of interparticle interactions in the problem of four bodies in the plane are found, at which the components of the general solution are the meromorphic functions, as well as 15 sets, at which the corresponding systems have no Painlevé property. The results obtained can be applied in the analytic theory of differential equations, as well as for solving the problems of cosmic dynamics. 

About the Author

A. Т. Sazonova
Yanka Kupala State University of Grodno
Belarus


References

1. Calogero, F. Classical Many-Body Problems amenable to exact treatments: lect. Notes in Phys. Monograph / F. Calogero. – Berlin: Springer, 2001.

2. Calogero, F. Periodic solutions of a many-rotator problem in the plane / F. Calogero, J.-P. Françoise // Inverse Problems. – 2001. – Vol. 17. – P. 1–8.

3. Calogero, F. Periodic solutions of a many-rotator problem in the plane. II. Analysis of various motions / F. Calogero, J.-P. Françoise, M. Sommacal // J. Nonlinear Math. Phys. – 2003. – Vol. 10. – Р. 157–214.

4. Calogero, F. Integrable and solvable many-body problems in the plane via complexification / F. Calogero // J. Math. Phys. – 1998. – Vol. 39. – P. 5268–5291.

5. Calogero, F. Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related «Solvable» Many Body Problems» / F. Calogero // Nuovo Cimento. – 1978. – Vol. 43 B. – P. 177–241.

6. Сазонова, А. Т. Разрешимые случаи в задаче четырех тел / А. Т. Сазонова // Весн. Годзен. дзярж. ун-та им. Я. Купалы. Сер. 2, Матэматыка. Фізіка. Інфарматыка, выліч. тэхніка і кіраванне. − 2014. − № 3 (180). – С. 45–53.

7. Мартынов, И. П. Аналитическая теория нелинейных уравнений и систем: пособие / И. П. Мартынов, Н. С. Березкина, В. А. Пронько. – Гродно: ГрГУ, 2009.


Review

Views: 830


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)