Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

ROBUST ELECTRONIC-NUCLEAR NV–13C SPIN SYSTEMS IN THE DIAMOND FOR QUANTUM TECHNOLOGIES

Abstract

Using the methods of computational chemistry, we calculated matrices AKL describing hyperfine interactions (HFI) between the electron spin of the color ‘nitrogen-vacancy’ center (NV center) in a diamond and a 13C nuclear spin located somewhere in the Н-terminated carbon cluster C510[NV]H252 hosting the NV center. The rates W0 of the 13C spin flip-flops induced by anisotropic HFI are calculated systematically for all possible locations of 13C in the cluster. It is shown that in the cluster, there are specific positions of nuclear 13C spin, in which it almost does not undergo such flip-flops due to small off-diagonal elements in corresponding matrices AKL. Spatial locations of the 13C stability positions in the cluster are discovered and characteristic splitting values in the spectra of optically detected magnetic resonance (ODMR) for the stable NV–13C systems are calculated, which can be utilized to identify them during their experimental search for use in emerging quantum technologies. It is shown that the positions of the 13C nuclear spin located on the NV center symmetry axis are completely stable (W0 = 0). The characteristics of eight ‘axial’ NV–13C systems are elucidated. The presence of additional ‘non-axial’ near-stable NV–13C spin systems also exhibiting very low flip-flop rates (W0 → 0) due to a high local symmetry of the spin density distribution resulting in vanishing the off-diagonal HFI matrix AKL elements for such systems is revealed for the first time. Spatially, these ‘non-axial’ stable NV–13C systems are located near the plane passing through the vacancy of the NV center and being perpendicular to the NV axis. Analysis of the available publications showed that apparently, some of the predicted stable NV–13C systems have already been observed experimentally.

 

About the Authors

A. P. Nizovtsev
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus
D. Sc. (Physics and Mathematics), Leading Researcher, Center of Quantum Optics and Quantum Informatics


A. L. Pushkarchuk
Instituteof Physical-Organic Chemistry of the National Academy of Sciences of Belarus, Minsk Institute for Nuclear Problems of the Belarusian State University, Minsk
Belarus
Ph. D. (Physics and Mathematics), Senior Researcher, Laboratory of Adsorption and Ion Exchange


S. A. Kuten
Institute for Nuclear Problems of the Belarusian State University, Minsk
Belarus
Ph. D. (Physics and Mathematics), Head of the Laboratory of the Theoretical Physics and Simulation of Nuclear Processes


V. A. Pushkarchuk
Belarusian State University of Informatics and Radioelectronics, Minsk
Belarus
Ph. D. (Physics and Mathematics), Senior Researcher, Center 4.11 of the Research Department


S. Ya. Kilin
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus
Academician, D. Sc. (Physics and Mathematics), Professor, Head of the Center of Quantum Optics and Quantum Informatics, B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus; Deputy Chairman of the Presidium of the National Academy of Sciences of Belarus


A. V. Luzanov
SSI Institute of Single Crystals of the National Academy of Sciences of Ukraine, Kharkiv
Ukraine
D. Sc. (Physics and Mathematics), Professor, Leading Researcher, Department of X-ray Diffraction Studies and Quantum Chemistry


O. A. Zhikol
SSI Institute of Single Crystals of the National Academy of Sciences of Ukraine, Kharkiv
Ukraine
Ph. D. (Chemistry), Researcher, Department of X-ray Diffraction Studies and Quantum Chemistry


References

1. Dowling J.P., Milburn G.L. Quantum technology: the second quantum revolution. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, vol. 361, no. 1890, pp. 1655–1674. Doi: 10.1098/ rsta.2003.1227

2. Schleich W.P., Ranade K.S., Anton Ch., Arndt M., Aspelmeyer M., Bayer M., Berg G., Calarco T., Fuchs H., Giacobino E., Grassl M., Hänggi P., Heckl W.M., Hertel I.-V., Huelga S., Jelezko F., Keimer B., Kotthaus J.P., Leuchs G., Lütkenhaus N., Maurer U., Pfau T., Plenio M.B., Rasel E.M., Renn O., Silberhorn Ch., Schiedmayer J., Schmitt Landsiedel D., Schönhammer K., Ustinov A., Walther P., Weinfurter H., Welzl E., Wiesendanger R., Wolf S., Zeilinger A., Zoller P. Quantum technology: from research to application. Applied Physics B, 2016, vol. 122, p. 130. Doi: 10.1007/s00340-016-6353-8

3. Morton J.J.L., Lovett B.W. Hybrid Solid-State Qubits: The Powerful Role of Electron Spins. Annual Review of Condensed Matter Physics, 2011, vol. 2, no. 1, pp. 189–212. Doi: 10.1146/annurev-conmatphys-062910-140514

4. Ardavan A., Briggs G.A.D. Quantum control in spintronics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, vol. 369, no. 1948, pp. 3229–3248. Doi: 10.1098/rsta.2011.0009

5. Weber J.R., Koehl W.F., Varley J.B., Janotti A., Buckley B.B., Van de Walle C.G., Awschalom D.D. Quantum computing with defects. Proceedings of the National Academy of Sciences of the United States of America, 2010, vol. 107, no. 19, pp. 8513–8518. Doi: 10.1073/pnas.1003052107

6. Awschalom D.D., Bassett L.C., Dzurak A.S., Hu E.L., Petta J.R. Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors. Science, 2013, vol. 339, no. 6124, pp. 1174–1179. Doi: 10.1126/science.1231364

7. Jelezko F., Wrachtrup J. Read-out of single spins by optical spectroscopy. Journal of Physics: Condensed Matter, 2004, vol. 16, no. 30, pp. R1089–R1104. Doi: 10.1088/0953-8984/16/30/r03

8. Wrachtrup J., Jelezko F. Processing quantum information in diamond. Journal of Physics: Condensed Matter, 2006, vol. 18, no. 21, pp. S807–S824. Doi: 10.1088/0953-8984/18/21/s08

9. Wrachtrup J., Jelezko F. Single defect centres in diamond: A review. Physica Status Solidi (a), 2006, vol. 203, no. 13, pp. 3207–3225. Doi: 10.1002/pssa.200671403

10. Doherty M.W., Manson N.B., Delaney P., Jelezko F., Wrachtrup J., Hollenberg L.C.L. The nitrogen-vacancy color centre in diamond. Physics Reports, 2013, vol. 528, no. 1, pp. 1–45. Doi: 1016/j.physrep.2013.02.001

11. Dobrovitski V.V., Fuchs G.D., Falk A.L., Santori C., Awschalom D.D. Quantum control over Single Spins in Diamond. Annual Review of Condensed Matter Physics, 2013, vol. 4, no. 1, pp. 23–50. Doi: 10.1146/annurev-conmatphys-030212-184238

12. Jelezko F., Gaebel T., Popa I., Domhan M., Gruber A., Wrachtrup J. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Physical Review Letters, 2004, vol. 93, no.13, p.130501. Doi: 10.1103/physrevlett.93.130501

13. Markham M.L., Dodson J.M., Scarsbrook G.A., Twitchen D.J., Balasubramanian G., Jelezko F., Wrachtrup J. CVD diamond for spintronics. Diamond and Related Materials, 2011, vol. 20, no. 2, pp. 134–139. Doi: 10.1016/j.diamond.2010.11.016

14. Orwa J.O., Greentree A.D., Aharonovich I., Alves A.D.C., VanDonkelaar J., Stacey A., Prawer S. Fabrication of single optical centres in diamond – a review. Journal of Luminescence, 2010, vol. 130, no. 9, pp. 1646–1654. Doi: 10.1016/j.jlumin.2009.12.028

15. Aharonovich I., Neu E. Diamond Nanophotonics. Advanced Optical Materials, 2014, vol. 2, no. 10, pp. 911–928. Doi: 10.1002/adom.201400189

16. Souza A.M., Álvarez G.A., Suter D. Robust dynamical decoupling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, vol. 370, no. 1976, pp. 4748–4769. Doi: 10.1098/rsta.2011.0355

17. Smeltzer B., Childress L., Gali A.13C hyperfine interactions in the nitrogen-vacancy centre in diamond. New Journal of Physics, 2011, vol. 13, no. 2, p. 025021. Doi: 10.1088/1367-2630/13/2/025021

18. Dréau A., Maze J.-R., Lesik M., Roch J.-F., Jacques V. High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond. Physical Review B, 2012, vol. 85, no. 13, p. 134107. Doi: 10.1103/physrevb.85.134107

19. Zhao N., Honert J., Schmid B., Klas M., Isoya J., Markham M., Twitchen D., Jelezko F., Liu R.-B., Fedder H., Wrachtrup J. Sensing single remote nuclear spins. Nature Nanotechnology, 2012, vol. 7, no. 10, pp. 657–662. Doi: 10.1038/nnano.2012.152

20. Kolkowitz S., Unterreithmeier Q.P., Bennett S.D., Lukin M.D. Sensing distant nuclear spins with a single electron spin. Physical Review Letters, 2012, vol. 109, no. 13, p. 13760. Doi: 10.1103/physrevlett.109.137601

21. Rondin L.L., Tetienne J.-P., Hingant T., Roch J.-F., Maletinsky P., Jacques V. Magnetometry with nitrogen-vacancy defects in diamond. Repors on Progress in Physics, 2014, vol. 77, no. 5, p. 056503. Doi: 10.1088/0034-4885/77/5/056503

22. Wrachtrup J., Finkler A. Single spin magnetic resonance. Journal of Magnetic Resonance, 2016, vol. 269, pp. 225– 236. Doi: 10.1016/j.jmr.2016.06.017

23. Schirhagl R., Chang K., Loretz M., Degen Ch.L. Nitrogen-Vacancy Centers in Diamond: Nanoscale Sensors for Physics and Biology. Annual Review of Physical Chemistry, 2014, vol. 65, no. 1, pp. 83–105. Doi: 10.1146/annurev-physchem-040513-103659

24. Nagl A., Hemelaar S.R., Schirhagl R. Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes – a review. Analytical and Bioanalytical Chemistry, 2015, vol. 407, no. 25, pр. 7521–7536. Doi: 10.1007/ s00216-015-8849-1

25. Greentree A.D., Fairchild B.A., Hossain F.M., Prawer S. Diamond integrated quantum photonics. Materials Today, 2008, vol. 11, no. 9, pр. 22–31. Doi: 10.1016/s1369-7021(08)70176-7

26. Castelletto S., Johnson B.C., Boretti A. Quantum Effects in Silicon Carbide Hold Promise for Novel Integrated Devices and Sensors. Advanced Optical Materials, 2013, vol. 1, no. 9, pp. 609–625. Doi: 10.1002/adom.201300246

27. Astakhov G.V., Simin D., Dyakonov V., Yavkin B.V., Orlinskii S.B., Proskuryakov I.I., Anisimov A.N., Soltamov V.A., Baranov P.G. Spin Centres in SiC for Quantum Technologies. Applied Magnetic Resonance, 2016, vol. 47, no. 7, pp. 793–812. Doi: 10.1007/s00723-016-0800-x

28. Pushkarchuk V.A., Kilin S.Ya., Nizovtsev A.P., Pushkarchuk A.L., Borisenko V.E., von Borzyskowski C., Filonov A.B. Ab Initio modeling of the electronic and spin properties of the [NV]-centers in diamond nanocrystals. Optics and Spectroscopy, 2005, vol. 99, no. 2, pp. 245–256. Doi: 10.1134/1.2034611

29. Pushkarchuk V.A. Kilin S.Ya., Nizovtsev A.P., Pushkarchuk A.L., Filonov A.B., Borisenko V.E. Modeling of atomic and electronic structure of diamond nanocrystals containing [NV]-centers by the density functional method. Journal Applied Spectroscopy, 2007, vol. 74, no. 1, pp. 95–101. Doi: 10.1007/s10812-007-0015-x

30. Pushkarchuk V.A., Kilin S.Ya., Nizovtsev A.P., Borisenko V.E., Filonov A.B., Pushkarchuk A.L., Kuten S.A. Quantum Chemical Modeling of Structural, Electronic, and Spin Characteristics of NV Centers in Nanostructured Diamond: Surface Effect. Optics and Spectroscopy, 2010, vol. 108, no. 2, pp. 254–260. Doi: 10.1134/s0030400x10020141

31. Nizovtsev A.P., Kilin S.Ya., Pushkarchuk V.A., Pushkarchuk A.L., Kuten S.A. Quantum registers based on single NV + n13C centers in diamond: I. The spin Hamiltonian method. Optics and Spectroscopy, 2010, vol. 108, no. 2, pp. 230–238. Doi: 10.1134/s0030400x10020128

32. Nizovtsev A.P., Kilin S.Ya., Pushkarchuk A.L., Pushkarchuk V.A., Kuten S.A. Spin-Hamiltonian analysis of quantum registers on single NV center and proximal 13Cnuclei in diamond. Horodecki R., Kilin S., Kowalik J. (eds.) Quantum cryptography and computing: Theory and Implementation. IOS Press, 2010, vol. 26, pp. 148–157. Doi: 10.3233/978-1-60750-547-1-148

33. Nizovtsev A.P., Kilin S.Ya., Pushkarchuk A.L., Pushkarchuk V.L., Kuten S.A. Kramers Degenerated Spin Systems “NV Center + Few Proximal 13C Nuclei” in Diamond for Single-Spin Magnetometry. Nonlinear Phenomena in Complex Systems, 2011, vol. 14, no. 4, pp. 319–334.

34. Gali A.A., Fyta M., Kaxiras E. Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors. Physal Review B, 2008, vol. 77, no. 15, p. 155206. Doi: 10.1103/physrevb.77.155206

35. Smeltzer B, Childress L, Gali A. 13C hyperfine interactions in the nitrogen-vacancy centre in diamond. New Journal of Physics, 2011, vol. 13, no. 2, p. 025021. Doi: 10.1088/1367-2630/13/2/025021

36. Nizovtsev A.P., Kilin S.Ya., Pushkarchuk A.L., Pushkarchuk V.A., Jelezko F. Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C291[NV]- H172 diamond cluster hosting NV center. New Journal of Physics, 2014, vol. 16, no. 8, p. 083014. Doi: 10.1088/1367-2630/16/8/083014

37. Luzanov A.V. About theoretical peculiarities of lowest excitations in modified nanodiamond color centers. Functional Materials, 2017, vol. 24.

38. Dréau A., Jamonneau P., Gazzano O., Kosen S., Roch J.-F., Maze J.R., Jacques V. Probing the Dynamics of a Nuclear Spin Bath in Diamond through Time-Resolved Central Spin Magnetometry. Physical Review Letters, 2014, vol. 113, no. 13, p. 137601. Doi: 10.1103/physrevlett.113.137601

39. Waldherr G., Wang Y., Zaiser S., Jamali M., Schulte-Herbrüggen T., Abe H., Ohshima T., Isoya J., Du J.F., Neumann P., Wrachtrup J. Quantum error correction in a solid-state hybrid spin register. Nature, 2014, vol. 506, no. 7487, pp. 204–207. Doi: 10.1038/nature12919

40. Zaiser S., Rendler T., Jakobi I., Wolf Th., Lee S.-Y., Wagner S., Bergholm V., Schulte-Herbrüggen Th., Neumann Ph., Wrachtrup J. Enhancing quantum sensing sensitivity by a quantum memory. Nature Communications, 2016, vol. 7, p. 12279. Doi: 10.1038/ncomms12279

41. Unden Th., Balasubramanian P., Louzon D., Vinkler Y., Plenio M.B., Markham M., Twitchen D., Lovchinsky I., Sushkov A.O., Lukin M.D., Retzker A., Naydenov B., McGuinness L.P., Jelezko F. Quantum metrology enhanced by repetitive quantum error correction. Physical Review .Letters, 2016, vol. 116, no. 23, p. 230502. Doi: 10.1103/physrevlett.116.230502


Review

Views: 845


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)