BAND STRUCTURE OF THE LAYERED GRAPHENE–ZnO, GRAPHENE–ZnS HETEROSYSTEMS: QUANTUM-MECHANICAL SIMULATION
Abstract
Graphene has semiconductor properties in several layers structures (heterostructure). Zinc oxide/graphene (ZnO/graphene) and zinc sulfide/graphene (ZnS/graphene) have been studied by quantum-mechanical simulation using the VASP software. The structural properties of a typical layered material (black phosphorus) have been simulated by different electron density functionals. Thus, the DFT electron density functional implemented in the VASP software was chosen to take into account the Van der Waals forces. Interlayer distances have been determined to study systems by a suitable electron density functional (DFT-D2). The distance is 3.1 Å for black phosphorus, 3.16 Å (ZnO/graphene) and 3.45 Å (ZnS/graphene) for heterostructures. Energy band structures have been calculated. Thus, the influence of a zinc-containing material on the graphene energy band structure has been registered. A band gap has been observed in ZnS/graphene (0.35 eV), but it is absent in ZnO/graphene. Taking into account that the DFT method underestimates the band gap width, this value may be larger in experimental works.
About the Authors
M. S. BaranavaBelarus
Postgraduate, Junior Researcher of SRL 4.4 SRP BSUIR
V. A. Skachkova
Belarus
Postgraduate, Junior Researcher of SRL 4.4 SRP BSUIR
V. R. Stempitsky
Belarus
Ph. D. (Engineering), Assistant Professor of the Department of Micro- and Nanoelectronics, Head of SRL 4.4 SRP BSUIR
D. C. Hvazdousky
Belarus
Undergraduate
References
1. Young-Woo Son, Cohen M. L., Louie S. G. Energy gaps in graphene nanoribbons. Phisical Review Letters, 2006, vol. 97, no. 21, pp. 216803(1–4). Doi: 10.1103/PhysRevLett.97.216803
2. Ebnonnasir A., Narayanan B., S. Kodambaka, Ciobanu C. V. Tunable MoS2 bandgap in MoS2-graphene heterostructures. Applied Physics Letters, 2014, vol. 105, no. 3, pp. 031603(1–5). Doi: 10.1063/1.4891430
3. Monteverde U., Pal J., Migliorato M. A., Missous M., Bangert U., Zan R., Kashtiban R., Powell D. Under pressure: Control of strain, phonons and bandgap opening in rippled grapheme. Carbon, 2015, vol. 91, pp. 266–274. Doi: 10.1016/j. carbon.2015.04.044
4. Kaoru Kanayama, Kosuke Nagashio. Gap state analysis in electric-field-induced band gap for bilayer grapheme. Scientific Reports, 2015, vol. 5, no. 1, pp. 15789 (1–8). Doi: 10.1038/srep15789
5. Ivanovskii A. L. Graphene-based and graphene-like materials. Russian Chemical Reviews, 2012, vol. 81, no. 7, pp. 571–605. Doi: 10.1070/rc2012v081n07abeh004302
6. Baojun Li, Huaqiang Cao. ZnO@graphene composite with enhanced performance for the removal of dye from water. Journal of Materials Chemistry, 2011, vol. 21, no. 10, pp. 3346–3349. Doi: 10.1039/c0jm03253k
7. Xinjuan Liu, Likun Pan, Tian Lv, Ting Lu, Guang Zhu, Zhuo Sun, Changqing Sun. Microwave-assisted synthesis of ZnO–graphene composite for photocatalytic reduction of Cr(VI). Catalysis Science & Technology, 2011, vol. 1, no. 7, pp. 1189–1193. Doi: 10.1039/c1cy00109d
8. Pan S., Liu X. ZnS–Graphene nanocomposite: Synthesis, characterization and optical properties. Journal of Solid State Chemistry, 2012, vol. 191, pp. 51–56. Doi: 10.1016/j.jssc.2012.02.048
9. Mao M., Jiang L., Wu L., Zhang M., Wang T. The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries. Journal of Materials Chemistry A, 2015, vol. 3, pp. 13384–13389. Doi: 10.1039/c5ta01501d
10. Congjun Wu, Fei Wang, Caoyuan Cai, Zhihao Xu, Yang Ma, Fan Huang, Feixiang Jia, Min Wang. Integration of graphene/ZnS nanowire film hybrid based photodetector arrays for high-performance image sensors. 2D Materials, 2017, vol. 4, no. 2, pp. 025113. Doi: 10.1088/2053-1583/aa735f
11. Tu Z. C. First-principles study on physical properties of a single ZnO monolayer with graphene-like structure. Jour nal of Computational and Theoretical Nanoscience, 2010, vol. 7, no. 6, pp. 1182–1186. Doi: 10.1166/jctn.2010.1470
12. Antonova I. V. Vertical heterostructures based on graphene and other 2D materials. Semiconductors, 2016, vol. 50, no. 1, pp. 66–82. Doi: 0.1134/s106378261601005x
13. Kohn W., Sham L. J. Self-consistent equations including exchange and correlation effects. Physical Review, 1965, vol. 140, no. 4A, pp. A1133–A1138. Doi: 10.1103/physrev.140.a1133
14. Arbuznikov A. V. Hybrid exchange correlation functionals and potentials: Concept elaboration. Journal of Structural Chemistry, 2007, vol. 48, pp. S1–S31. Doi: 10.1007/s10947-007-0147-0
15. Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 2006, vol. 27, no. 15, pp. 1787–1799. Doi: 10.1002/jcc.20495
16. Dion M., Rydberg H., Schroder E., Langreth D. C., Lundqvist B. I. Van der Waals density functional for general geometries. Physical Review Letters, 2004, vol. 92, no. 24, pp. 246401. Doi: 10.1103/physrevlett.92.246401
17. Morita A. Semiconducting black phosphorus. Applied Physics A. Solids and Surfaces, 1986, vol. 39, no. 4, pp. 227–242. Doi: 10.1007/BF00617267
18. Blöchl P. E. Projector augmented-wave method. Physical Review B, 1994, vol. 50, no. 24, pp. 17953–17979. Doi: 10.1103/physrevb.50.17953
19. Kresse G., Joubert J. From ultrasoft pseudopotentials to the projector augmented wave method. Physical Review B, 1999, vol. 59, no. 3, pp. 1758–1775. Doi: 10.1103/physrevb.59.1758
20. Brown A., Rundqvist S. Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 1965, vol. 19, no. 4, pp. 684–685. Doi: 10.1107/s0365110x65004140
21. Hubbard J. Electron correlations in narrow energy bands. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1963, vol. 276, no. 1365, pp. 238–257. Doi: 10.1098/rspa.1963.0204
22. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A. Two-dimensional gas of massless Dirac fermions in grapheme. Nature, 2005, vol. 438, no. 7065, pp. 197–200. Doi: 10.1038/ nature04233
23. Perdew J. P. Density functional theory and the band gap problem. International Journal of Quantum Chemistry, 1985, vol. 28, no. S19, pp. 497–523. Doi: 10.1002/qua.560300314