Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

TRAINING SUBSET SELECTION METHODS FOR CALIBRATION WITH FLUORESCENCE SPECTROSCOPY IN SMALL DATA SETS OF SAMPLES

https://doi.org/10.29235/1561-2430-2018-54-1-77-83

Abstract

A limited number of samples and an impossible a priori control of a desired parameter value stipulate how it is important to solve the problem of selecting a training set for calibration by the multivariate spectral analysis in order to reduce a calibration error. Possible variants of a training subset selection from small data sets are shown for temperature calibration with fluorescence spectra of Yb3+:CaF2 recorded in the range of 880–1120 nm with a resolution of about 0.2 nm for the temperature range from 66 to 150 °C and at a step of 2 °C. The methods applied are the uniform distribution, the Kennard and Stone algorithm and the cluster analysis in principal component space. The effect of the method choice on the calibration accuracy has been evaluated. The application of the principal component analysis gives the possibility to select spectra without a priori knowledge of a temperature, to which the fluorescence spectra correspond. The root-mean-square error of the predicted temperature value is shown to be 3.98 ° C for the uniform distribution of the training subset samples over the space of the first principal component and 1.07 ° C for the Kennard and Stone algorithm. The minimum root-mean-square prediction error of 0.98 °C is shown to be achieved with the training subset selection by the hierarchical cluster analysis in the space of the principal components of the spectra studied.

About the Authors

M. A. Khodasevich
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus
Ph. D. (Physics and Mathematics), Deputy Head of the Laboratory


N. A. Saskevich
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus
Ph. D. (Physics and Mathematics), Senior Researcher


References

1. Kalivas, J. H. Calibration Methodologies. Tauler R., Walczak B., Brown S. D. (eds.). Comprehensive Chemometrics: Chemical and Biochemical Data Analysis. Elsevier, 2009, pp. 1–32. Doi: 10.1016/b978-044452701-1.00072-7

2. Tao Chen, Qingrui Chang, Clevers J.G.P.W., Kooistra L. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy. Environmental Pollution, 2015, vol. 206, pp. 217–226. Doi: 10.1016/j. envpol.2015.07.009

3. Xue Jintao, Ye Liming, Liu Yufei, Li Chunyan, Chen Han. Noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, vol. 179, pp. 250–254. Doi: 10.1016/j.saa.2017.02.032

4. Lijun Yao, Ning Lyu, Jiemei Chen, Tao Pan, Jing Yu. Joint analyses model for total cholesterol and triglyceride in human serum with near-infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, vol. 159, pp. 53–59. Doi: 10.1016/j.saa.2016.01.022

5. Da Silva V. H., da Silva J. J., Pereira C. F. Portable near-infrared instruments: Application for quality control of poly-morphs in pharmaceutical raw materials and calibration transfer. Journal of Pharmaceutical and Biomedical Analysis, 2017, vol. 134, pp. 287–294. Doi: 10.1016/j.jpba.2016.11.036

6. Lian Li, Hengchang Zang, Jun Li, Dejun Chen, Tao Li, Fengshan Wang. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spec-tro scopy, 2014, vol. 127, pp. 91–97. Doi: 10.1016/j.saa.2014.02.022

7. Sulub Y., DeRudder J. Determination of polymer blends composed of polycarbonate and rubber entities using near- infrared (NIR) spectroscopy and multivariate calibration. Polymer Testing, 2013, vol. 32, no. 4, pp. 802–809. Doi: 10.1016/j. polymertesting.2013.03.008

8. Pezzei C. K., Schonbichler S. A., Kirchler C. G., Schmelzer J., Hussain S., Huck-Pezzei V. A., Popp M., Krolitzek J., Bonn G. K. Application of benchtop and portable near-infrared spectrometers for predicting the optimum harvest time of Verbena officinalis. Talanta, 2017, vol. 169, pp. 70–76. Doi: 10.1016/j.talanta.2017.03.067

9. Knadel M., Gislum R., Hermansen C., Peng Y., Moldrup P., de Jonge L. W., Greve M. H. Comparing predictive ability of laser-induced breakdown spectroscopy to visible near-infrared spectroscopy for soil property determination. Biosystems Engineering, 2017, vol. 156, pp. 157–172. Doi: 10.1016/j.biosystemseng.2017.01.007

10. Siriphollakul P., Nakano K., Kanlayanarat S., Ohashi S., Sakai R., Rittiron R., Maniwara P. Eating quality evaluation of Khao Dawk Mali 105 rice using near-infrared spectroscopy. LWT – Food Science and Technology, 2017, vol. 79, pp. 70–77. Doi: 10.1016/j.lwt.2017.01.014

11. Peng B., Ge N., Cui L., Zhao H. Monitoring of alcohol strength and titratable acidity of apple wine during fermentation using near-infrared spectroscopy. LWT – Food Science and Technology, 2016, vol. 66, pp. 86–92. Doi: 10.1016/j. lwt.2015.10.018

12. Khodasevich M. A., Sinitsyn G. V., Skorbanova E. A., Rogovaya M. V., Kambur E. I., and Aseev V. A. Determination of the Chemical Parameters and Manufacturer of Divins from Their Broadband Transmission Spectra. Optics and Spectroscopy, 2016, vol. 120, pp. 978–982. Doi: 10.1134/s0030400x16050155

13. Khodasevich M. A., Skorbanova E. A., Obade L. I., Degtyar N. F., Kambur E. I., Rogovaya M. V. Application of multivariate analysis of transmission spectra to identify wines with protected geographical indication (IGP). Pribory i metody izmerenii = Devices and Methods of Measurements, 2016, vol. 7, no. 1, pp. 104–113 (in Russian). Doi: 10.21122/2220-9506-2016-7-1-104-113

14. Alves J. C. L., Poppi R. J. Quantification of conventional and advanced biofuels contents in diesel fuel blends using near-infrared spectroscopy and multivariate calibration. Fuel, 2016, vol. 165, pp. 379–388. Doi: 10.1016/j.fuel.2015.10.079

15. Anderson R. B., Bell J. F., Wiens R. C., Morris R. V., Clegg S. M. Clustering and training set selection methods for improving the accuracy of quantitative laser induced breakdown spectroscopy. Spectrochimica Acta Part B, 2012, vol. 70, pp. 24–32. Doi: 10.1016/j.sab.2012.04.004

16. Abdi H. Partial least squares regression and projection on latent structure regression. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, vol. 2, pp. 97–106. Doi: 10.1002/wics.51

17. Khodasevich M., Varaksa Y., Sinitsyn G., Aseev V., Demesh M., Yasukevich A. Determining the Stark structure of Yb3+ energy levels in Y3Al5O12 and CaF2 using principal component analysis of temperature dependences of fluorescence spectra. Journal of Luminescence, 2017, vol. 187, pp. 295–297. Doi: 10.1016/j.jlumin.2017.03.014

18. Esbensen K. H., Geladi P. Principal Component Analysis: Concept, Geometrical Interpretation, Mathematical Background, Algorithms, History, Practice. Comprehensive Chemometrics, 2009, vol. 2, pp. 211–226. Doi: 10.1016/b978-044452701-1.00043-0

19. Aseev V. A., Varaksa Yu. A., Kolobkova E. V., Sinitsyn G. V., Khodasevich M. A. Application of Projection on Latent Structures for Determining Temperature of Erbium-Doped Lead Fluoride Nano-Glass-Ceramics from Upconversion Fluorescence Spectra. Optics and Spectroscopy, 2015, vol. 118, pp. 727–728. Doi: 10.1134/s0030400x15050033

20. Kennard R. W., Stone L. A. Computer aided design of experiments. Technometrics, 1969, vol. 11, no. 1, pp. 137–148. Doi: 10.2307/1266770

21. Daszykowski M., Walczak B., Massart D. L. Representative subset selection. Analytica Chimica Acta, 2002, vol. 468, pp. 91–103. Doi: 10.1016/s0003-2670(02)00651-7

22. Mandel I. D. Cluster analysis. Moscow, Finansy i statistika Publ., 1988, 176 p. (in Russian).


Review

Views: 931


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)