Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

Tate cohomology of special norm modules related to Henselian division algebras

https://doi.org/10.29235/1561-2430-2018-54-3-273-278

Abstract

For central division algebras D over Henselian fields K with unitary K/k-involutions the Tate cohomology groups of Z/(2)-modules A = NZ̅ /K̅(Nrd(*)), where     ,      are the residue algebras of K and D, respectively,      is the center of  , and NZ̅ / K̅   is the norm map from      to   , are computed. Moreover, D is assumed to be tamely ramified K-algebra and a field belongs either to the class of C1 -fields, or to the class of totally imaginary global fields.

About the Author

V. I. Yanchevskiĭ
Institute of Mathematics of the National Academy of Sciences of Belarus
Belarus

Vyacheslav I. Yanchevskiĭ – Member of NAS of Belarus, D. Sc. (Physics and Mathematics), Professor, Head of the  Department  of  Algebra.

11, Surganov Str., 220072,  Minsk.



References

1. Yanchevskii V. I. A converse problem in reduced unitary K-theory. Mathematical Notes of the Academy of Sciences of the USSR, 1979, vol. 26, no 3, pp. 728–731. https://doi.org/10.1007/bf01138683

2. Mamford D. Abelian Varieties. Oxford University Press, 1970. 242 p.

3. Cassels J. W. S., Fröhlich A. (ed.). Algebraic Number Theory. Thompson book company INC. Washington, D.C., 1967. 366 p.

4. Serre J.-P. Cohomologie Galoisienne. Lecture Notes in Mathematics Series. Vol. 5, Springer-Verlag Berlin Heidelberg,1994. https://doi.org/10.1007/bfb0108761

5. Wadsworth A. R. Unitary SK1 of Semiramified Graded and Valued Division Algebras. Manuscripta Mathematica,2012, vol. 139. pp. 343–389. https://doi.org/10.1007/s00229-011-0519-9

6. Ershov Yu. L. Henselian valuations of division rings and the group SK . Mathematics of the USSR-Sbornik, 1983, vol. 45, no. 1, pp. 63–71. https://doi.org/10.1070/SM1983v045n01ABEH000992

7. Draxl P. K. Normen in Diedererweiterungen von Zahlkörpern. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 1982, vol. 33, pp. 99–116 (in German).


Review

Views: 942


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)