Tate cohomology of special norm modules related to Henselian division algebras
https://doi.org/10.29235/1561-2430-2018-54-3-273-278
Abstract
For central division algebras D over Henselian fields K with unitary K/k-involutions the Tate cohomology groups of Z/(2)-modules A = NZ̅ /K̅(NrdD̅(D̅*)), where K̅ , D̅ are the residue algebras of K and D, respectively, Z̅ is the center of D̅ , and NZ̅ / K̅ is the norm map from Z̅ to K̅ , are computed. Moreover, D is assumed to be tamely ramified K-algebra and a field k̅ belongs either to the class of C1 -fields, or to the class of totally imaginary global fields.
Keywords
About the Author
V. I. YanchevskiĭBelarus
Vyacheslav I. Yanchevskiĭ – Member of NAS of Belarus, D. Sc. (Physics and Mathematics), Professor, Head of the Department of Algebra.
11, Surganov Str., 220072, Minsk.
References
1. Yanchevskii V. I. A converse problem in reduced unitary K-theory. Mathematical Notes of the Academy of Sciences of the USSR, 1979, vol. 26, no 3, pp. 728–731. https://doi.org/10.1007/bf01138683
2. Mamford D. Abelian Varieties. Oxford University Press, 1970. 242 p.
3. Cassels J. W. S., Fröhlich A. (ed.). Algebraic Number Theory. Thompson book company INC. Washington, D.C., 1967. 366 p.
4. Serre J.-P. Cohomologie Galoisienne. Lecture Notes in Mathematics Series. Vol. 5, Springer-Verlag Berlin Heidelberg,1994. https://doi.org/10.1007/bfb0108761
5. Wadsworth A. R. Unitary SK1 of Semiramified Graded and Valued Division Algebras. Manuscripta Mathematica,2012, vol. 139. pp. 343–389. https://doi.org/10.1007/s00229-011-0519-9
6. Ershov Yu. L. Henselian valuations of division rings and the group SK . Mathematics of the USSR-Sbornik, 1983, vol. 45, no. 1, pp. 63–71. https://doi.org/10.1070/SM1983v045n01ABEH000992
7. Draxl P. K. Normen in Diedererweiterungen von Zahlkörpern. Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 1982, vol. 33, pp. 99–116 (in German).