Механические свойства и структурное состояние покрытий Cr–N и Ti–Cr–N, сформированных методом вакуумно-дугового осаждения
https://doi.org/10.29235/1561-2430-2019-55-3-366-374
Аннотация
Исследовано структурно-фазовое состояние, изучены механические свойства методом наноиндентирования по методике Оливера и Фарра и определена нагрузка, при которой происходит отслаивание покрытий Cr–N и Ti–Cr–N, сформированных методом вакуумно-дугового осаждения на подложках из стали 12Х18Н10т и сплава Zr2,5%Nb. Установлено, что покрытие Ti–Cr–N имеет однофазную структуру (Ti,Cr)N с гранецентрированной кубической кристаллической решеткой (ГЦК), а покрытие Cr–N состоит из нитрида хрома CrN (ГЦК). Показано, что покрытие Ti–Cr–N обладает большей твердостью и вязкостью, чем покрытие Cr–N. Вследствие легированности атомами Ti, покрытие Ti–Cr–N имеет более высокую нагрузку отслаивания по сравнению с покрытием Cr–N. При этом у покрытия Ti–Cr–N нагрузка отслаивания от подложки из сплава Zr2,5%Nb в ≈2 раза большая, чем от подложки из стали 12Х18Н10т, в то время как покрытие Cr–N, напротив, выдерживает большие нагрузки до отслаивания от подложки из стали 12Х18Н10т, чем от сплава Zr2,5%Nb.
Ключевые слова
Об авторах
В. А. КукарекоБеларусь
Кукареко Владимир Аркадьевич – доктор физико-математических наук, профессор, начальник центра структурных исследований и трибо-механических испытаний материалов и изделий машиностроения
ул. Академическая, 12, 220072, г. Минск, Республика Беларусь
А. В. Кушнеров
Беларусь
Кушнеров Андрей Викторович – младший научный сотрудник
ул. Академическая, 12, 220072, г. Минск, Республика Беларусь
Ф. Ф. Комаров
Беларусь
Комаров Фадей Фадеевич – член-корреспондент, доктор физико-математических наук, профессор, заведующий лабораторией элионики
ул. Курчатова, 7, 220045, г. Минск, Республика Беларусь
С. В. Константинов
Беларусь
Константинов Станислав Валерьевич – кандидат физико-математических наук, старший научный сотрудник лаборатории элионики
ул. Курчатова, 7, 220045, г. Минск, Республика Беларусь
В. Е. Стрельницкий
Украина
Стрельницкий Владимир Евгеньевич – доктор физико-математических наук, старший научный сотрудник, начальник лаборатории сверхтвердых аморфных алмазоподобных и поликристаллических алмазных покрытий отдела ионно-плазменной обработки материалов
ул. Академическая, 1, 61108, г. Харьков, Украина
Список литературы
1. Kawai, M. Present status of study on development of materials resistant to radiation and beam impact / M. Kawai [et al.]. – J. Nucl. Mater. – 2008. – Vol. 377, № 1. – P. 21–27. https://doi.org/10.1016/j.jnucmat.2008.02.060
2. Musil, J. Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness / J. Musil // Surf. Coat. Technol. – 2012. – Vol. 207. – P. 50–65. https://doi.org/10.1016/j.surfcoat.2012.05.073
3. Gleiter, H. Nanocrystalline materials / H. Gleiter // Progress in Materials Science. – 1989. – Vol. 33, № 4. – P. 223–315. https://doi.org/10.1016/0079-6425(89)90001-7
4. Ivasishin, O. M. Nanostructured layers and coating formed by ion-plasma fluxes in titanіum alloys and steels / O. M. Ivasishin, A. D. Pogrebnjak, S. N Bratushka. – Kyiv: Akademperiodyka Publ., 2011. – 285 p. https://doi.org/10.15407/akademperiodyka.181.286
5. Вакуумно-плазменные покрытия на основе многоэлементных нитридов / Н. А. Азаренков [и др.] // Металлофизика и новейшие технологии. – 2013. – Т. 35, № 8. – С. 1061–1084.
6. Константинов, В. М. Адгезия покрытий Ti–N на модифицированной стальной подложке / В. М. Константинов, Г. А. Ткаченко, А. В. Ковальчук // Металлургия: респ. межведомств. сб. науч. тр. – Минск: БНТУ, 2014. – Вып. 35. – С. 272–281.
7. Кравчук, К. С. Измерение трибологических свойств покрытий и композиционных материалов на субмикронном и нанометровом масштабах: дисс. … канд. техн. наук: 01.04.07 / К. С. Кравчук. – М., 2015. – 138 с.
8. Oliver, W. C. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments / W. C. Oliver, G. M. Pharr // J. Mater. Res. – 1992. – Vol. 7, № 6. – Р. 1564–1583.
9. Oliver, W. C. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology / W. C. Oliver, G. M. Pharr // J. Mater. Res. – 2004. – Vol. 19, № 1. – P. 3–20. https://doi.org/10.1557/jmr.1992.1564
10. Структура и свойства твердых и сверхтвердых нанокомпозитных покрытий / А. Д. Погребняк [и др.] // Успехи физ. наук. – 2009. – Т. 179, № 1. – С. 1–30. https://doi.org/10.1557/jmr.2004.0002
11. Cavaleiro, A. Nanostructured Coatings / A. Cavaleiro, J. T. M . De Hosson. – Berlin: Springer-Verlag, 2006. – 648 p. https://doi.org/10.3367/ufnr.0179.200901b.0035
12. Microstructural design of hard coatings / P. H. Mayrhofer [et al.] // Prog. Mater Sci. – 2006. – Vol. 51, № 8. – P. 1032–1114. https://doi.org/10.1016/j.pmatsci.2006.02.002
13. Leyland, A. Design criteria for wear-resistant nanostructured and glassy-metal coatings / A. Leyland, A. Matthews // Surf. Coat. Technol. – 2004. – Vol. 177/178. – P. 317–324. https://doi.org/10.1016/j.surfcoat.2003.09.011
14. Relation between microstructure and hardness of nano-composite CrN/Si 3 N 4 coatings obtained using CrSi single target magnetron system / J. Morgiel [et al.] // Vacuum. – 2013. – Vol. 90. – P. 170–175. https://doi.org/10.1016/j.vacuum.2012.03.043
15. Краткий справочник физико-химических величин / Н. М. Барон [и др.]. – Л.: Химия, 1983. – 232 с.
16. The effect of steel substrate pre-hardening on structural, mechanical, and tribological properties of magnetron sputtered TiN and TiAlN coatings / F. F. Komarov [et al.] // Wear. – 2016. – Vol. 352/353. – Р. 92–101. https://doi.org/10.1016/j.wear.2016.02.007
17. Федотов, А. К. Физическое материаловедение: в 3 ч. / А. К. Федотов. – Минск: Выш. шк., 2012. – Ч. 2: Фазовые превращения в металлах и сплавах. – 446 с.