Preview

Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series

Advanced search

CONTINUOUS-WAVE DIODE-PUMPED Nd:KGdW/KTP LASER WITH INTRACAVITY FREQUENCY DOUBLING

Abstract

A CW and quasi-CW Nd:KGd(WO4)2/KTP laser with longitudinal diode-pumping at λ ~879 nm and intracavity frequency doubling in a three-mirror linear cavity has been created. At frequency doubling, superior results are achieved with a Ng-cut crystal by virtue of a simpler character of its thermal lens. At a CW pump power of 15.6 W, the power of the second harmonic generated at a wavelength of 533.6 nm amounts to ~0.9 W. At quasi-CW pumping, the laser generates with a duty cycle of 10 % and emits 10-20 ms long pulses, whose peak power reaches 2.25 W with an optical conversion efficiency of 9%. In the case of a Nр -cut Nd:KGd(WO4)2 crystal, the peak power of the second harmonic does not exceed 2.1 W.

About the Authors

A. A. Bui
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus


U. I. Dashkevich
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus


V. A. Orlovich
B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Minsk
Belarus


References

1. Багаев С., Дашкевич В. И., Орлович В. А. и др. // Квантовая электроника. 2011. Т. 41, № 3. С. 189-192.

2. PujolM. C., Carvajal J. J., MateosX. et al. // J. Lumin. 2013. Vol. 138. P. 77-82.

3. Loiko P. A., Dashkevich V I., Bagaev S. N. et al. // J. Lumin. 2014. Vol. 153. P. 221-226.

4. Takagi S., Enya Y., Kyono T. et al. // Appl. Phys. Express. 2012. Vol. 5. DOI: 10.1143/APEX.5.082102. 3 p.

5. Liu L., OkaM., Wiechmann W., Kubota S. // Opt. Lett. 1994. Vol. 19, N 3. P. 189-191.

6. Liu J., Shao Z., ZhangH., MengX. et al. // Opt. Commun. 2000. Vol. 173, N 1. P. 311-314.

7. Абазадзе А., Зверев Г. М., Колбацков Ю. М., Устименко Н. С. // Квантовая электроника. 2004. Т. 34. С. 20-22.

8. Musset O., Boquillon J. P. // Appl. Phys. B. 1997. Vol. 65. P. 13-18.

9. Kalisky Y., KravchikL., Labbe C. // Opt. Commun. 2001. Vol. 189. P. 113-125.

10. Kushawaha V., Yan Y., Chen Y. // Appl. Phys. B. 1996. Vol. 62. P. 533-535.

11. Grabtchikov A., Kuzmin A. N., Lisinetskii V A. et al. // Opt. Mater. 2001. Vol. 16, N 3. P. 349-352.

12. Savitski V G., Malyarevich A. M., Yumashev K. V et al. // Appl. Phys. B 2003. Vol. 76. P. 253-256.

13. Lisinetskii V A., Grabtchikov A. S., Demidovich A. A. et al. // Appl. Phys. B. 2007. Vol. 88, N 4. P. 499-501.

14. Дашкевич В. И., Орлович В. А., Шкадаревич А. П. // Журн. прикладной спектроскопии. 2009. Т. 76. С. 725-732.

15. Ustimenko N. S., Zabotin E. M. // Instr. and Exp. Tech. 2005. Vol. 48. P. 239-240.

16. Xia J., Lu Y. F., ZhangX. H. et al. // Laser Phys. Lett. 2011. Vol. 8. P. 21-23.

17. Findeisen J., Eichler H. J., Kaminskii A. A. // IEEE J. Quant. Electron. 1999. Vol. 35, N 2. P. 173-178.

18. Demidovich A., Shkadarevich A. P., Batay L. E. et al. // Proc. SPIE. 1997. Vol. 3176. P. 272-275.

19. Stankov K., Marowsky G. // Appl. Phys. B. 1995. Vol. 61. P. 213-215.

20. Hodson, N., Weber H. Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts and Applications, Second Edition. Springer, 2005.

21. Loiko P. A., Yumashev K. V., Kuleshov N. V et al. // Opt. Express. 2009. Vol. 17, N 26. P. 23536-23543.

22. МочаловИ. В. // Опт. журн. 1995. № 11. С. 4-15.

23. BoydR. W. Nonlinear Optics. Third Edition. Elsevier, Acad. Press, 2008.

24. Baer T. // J. Opt. Soc. Am. B. 1986. Vol. 3, N 9. P. 1175-1180.


Review

Views: 697


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1561-2430 (Print)
ISSN 2524-2415 (Online)