1. Popenda J. The oscillation of solution of difference equations. Computers & Mathematics with Applications, 1994, vol. 28, no. 1-3, pp. 271-279. https://doi.org/10.1016/0898-1221(94)00115-4
2. Agarwal R. P., Popenda J. Periodic Solutions of First Order Linear Difference Equations. Mathematical and Computer Modelling, 1995, vol. 22, no. 1, pp. 11-19. https://doi.org/10.1016/0895-7177(95)00096-k
3. Agarwal R. P., Wong P. J. Y. Advanced Topics in Difference Equations. Dordrecht, Boston, London, Kluwer Academic Publ., 1997. 509 p. https://doi.org/10.1007/978-94-015-8899-7
4. Elaydi S. An Introduction to Difference Equations. New York, Springer, 1999. 568 p. https://doi.org/10.1007/978-1-4757-3110-1
5. Janglajew K., Schmeidel E. L. R Periodicity of solutions of nonhomogeneous linear difference equations. Advances in Difference Equations, 2012, vol, 20012, no. 1. https://doi.org/10.1186/1687-1847-2012-195
6. Massera J. L. Observaciones sobre les soluciones periodicas de ecuaciones diferenciales. Boletin de la Facultad de Ingenieria, 1950, vol. 4, no. 1, pp. 37-45.
7. Kurzweil J., Veivoda O. On periodic and almost periodic solutions of the ordinary differential systems. Chekhoslovatskii matematicheskii zhurnal = Czechoslovak Mathematical Journal, 1955, vol. 5, no. 3, pp. 362-370 (in Russian).
8. Erugin N. P. Linear Systems of Ordinary Differential Equations with Periodic and Quasiperiodic Coefficients. Minsk, Publishing House of the Academy of Sciences of the BSSR, 1963. 272 p. (in Russian).
9. Grudo E. I., Demenchuk A. K. On periodic solutions with incommensurable periods of linear inhomogeneous periodic differential systems. Differentsial’nye uravneniya = Differential Equations, 1987, vol. 23, no. 3, pp. 409-416 (in Russian).
10. Demenchuk A. K. Asynchronous oscillations in differential systems. Conditions of existence and control. Saarbrucken, LAP Lambert Academic Publ., 2012. 186 p. (in Russian).
11. Borukhov V. T. Strongly invariant subspaces of nonautonomous linear periodic systems and their solutions with a period incommensurate with the period of the system. Differential Equations, 2018, vol. 54, no. 5, pp. 578-585. https://doi.org/10.1134/s0012266118050026
12. Papaleksi N. D. On a particular case of parametrically coupled systems. Journal of Physics, 1939, vol. 1, no. 5-6, pp. 373-379.
13. Penner D. I. Oscillations with a self-regulating interaction time. Doklady Akademii nauk SSSR [Proceedings of the Academy of Sciences of the USSR], 1972, vol. 204, no. 5, pp. 1065-1066 (in Russian).
14. Landa P. S., Duboshinskiĭ Ya. B. Self-oscillating systems with high-frequency power sources. Soviet Physics Uspekhi, 1989, vol. 32, no. 8, pp. 723-731. https://doi.org/10.1070/pu1989v032n08abeh002750
15. Lasunskii A. V. On the period of solutions of the discrete periodic logistic equation. Trudy Karelskogo nauchnogo centra RAN = Transactions of Karelian research centre of Russian Academy of Science, 2012, no. 5, pp. 44-48 (in Russian).
16. Demenchuk A. K. Strongly irregular periodic solutions the first-order linear homogeneous discrete equation. Doklady Natsional’noi akademii nauk Belarusi = Doklady of the National Academy of Sciences of Belarus, 2018, vol. 62, no. 3, pp. 263-267 (in Russian). https://doi.org/10.29235/1561-8323-2018-62-3-263-267